PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Visual Space is Compressed in Prefrontal Cortex Before Eye Movements 
Nature  2014;507(7493):504-507.
doi:10.1038/nature13149
PMCID: PMC4064801  PMID: 24670771
2.  Distinguishing bias from sensitivity effects in multialternative detection tasks 
Journal of Vision  2014;14(9):16.
Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making.
doi:10.1167/14.9.16
PMCID: PMC4141865  PMID: 25146574
signal detection theory; nonforced choice; unforced choice; multidimensional models; attention; perceptual decision-making; optimal decision theory
3.  TOP-DOWN CONTROL OF VISUAL ATTENTION 
Current opinion in neurobiology  2010;20(2):183-190.
Summary
Top-down visual attention improves perception of selected stimuli and that improvement is reflected in the neural activity at many stages throughout the visual system. Recent studies of top-down attention have elaborated on the signatures of its effects within visual cortex and have begun identifying its causal basis. Evidence from these studies suggests that the correlates of spatial attention exhibited by neurons within the visual system originate from a distributed network of structures involved in the programming of saccadic eye movements. We summarize this evidence and discuss its relationship to the neural mechanisms of spatial working memory.
doi:10.1016/j.conb.2010.02.003
PMCID: PMC2901796  PMID: 20303256
4.  Mechanisms of sleep-dependent consolidation of cortical plasticity 
Neuron  2009;61(3):454-466.
Summary
Sleep is thought to consolidate changes in synaptic strength, but the underlying mechanisms are unknown. We investigated the cellular events involved in this process in ocular dominance plasticity (ODP) - a canonical form of in vivo cortical plasticity triggered by monocular deprivation (MD) and consolidated by sleep via undetermined, activity-dependent mechanisms. We find that sleep consolidates ODP primarily by strengthening cortical responses to non-deprived eye stimulation. Consolidation is inhibited by reversible, intracortical antagonism of NMDA receptors (NMDARs) or cAMP-dependent protein kinase (PKA) during post-MD sleep. Consolidation is also associated with sleep-dependent increases in the activity of remodeling neurons, and in the phosphorylation of proteins required for potentiation of glutamatergic synapses. These findings demonstrate that synaptic strengthening via NMDAR and PKA activity is a key step in sleep-dependent consolidation of ODP.
doi:10.1016/j.neuron.2009.01.007
PMCID: PMC2665998  PMID: 19217381
V1; AP; NREM; REM; ODP; OD; MD; EEG; EMG; LTD; LTP; NMDAR; AVP; VEH; CBI; NBI; MI; SI; DE; NDE; ERI; VR; PKA; cAMP; CREB; Rp-8-Cl-cAMPS; AMPAR; GluR1; CaMKII; ERK
5.  Mid-fusiform Activation during Object Discrimination Reflects the Process of Differentiating Structural Descriptions 
Journal of cognitive neuroscience  2008;20(9):1711-1726.
The present study explored constraints on mid-fusiform activation during object discrimination. In three experiments, participants performed a matching task on simple line configurations, nameable objects, three dimensional (3-D) shapes, and colors. Significant bilateral mid-fusiform activation emerged when participants matched objects and 3-D shapes, as compared to when they matched two-dimensional (2-D) line configurations and colors, indicating that the mid-fusiform is engaged more strongly for processing structural descriptions (e.g., comparing 3-D volumetric shape) than perceptual descriptions (e.g., comparing 2-D or color information). In two of the experiments, the same mid-fusiform regions were also modulated by the degree of structural similarity between stimuli, implicating a role for the mid-fusiform in fine differentiation of similar visual object representations. Importantly, however, this process of fine differentiation occurred at the level of structural, but not perceptual, descriptions. Moreover, mid-fusiform activity was more robust when participants matched shape compared to color information using the identical stimuli, indicating that activity in the mid-fusiform gyrus is not driven by specific stimulus properties, but rather by the process of distinguishing stimuli based on shape information. Taken together, these findings further clarify the nature of object processing in the mid-fusiform gyrus. This region is engaged specifically in structural differentiation, a critical component process of object recognition and categorization.
doi:10.1162/jocn.2008.20116
PMCID: PMC2675283  PMID: 18345986

Results 1-5 (5)