PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (66)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation 
Vascular dementia (VaD) is the second leading cause of dementia behind Alzheimer's disease (AD) and is a frequent comorbidity with AD, estimated to occur in as many as 40% of AD patients. The causes of VaD are varied and include chronic cerebral hypoperfusion, microhemorrhages, hemorrhagic infarcts, or ischemic infarcts. We have developed a model of VaD by inducing hyperhomocysteinemia (HHcy) in wild-type mice. By placing wild-type mice on a diet deficient in folate, B6, and B12 and supplemented with excess methionine, we induced a moderate HHcy (plasma level homocysteine 82.93±3.561 μmol). After 11 weeks on the diet, the hyperhomocysteinemic mice showed a spatial memory deficit as assessed by the 2-day radial-arm water maze. Also, magnetic resonance imaging and subsequent histology revealed significant microhemorrhage occurrence. We found neuroinflammation induced in the hyperhomocysteinemic mice as determined by elevated interleukin (IL)-1β, tumor necrosis factor (TNF)α, and IL-6 in brain tissue. Finally, we found increased expression and increased activity of the matrix metalloproteinase 2 (MMP2) and MMP9 systems that are heavily implicated in the pathogenesis of cerebral hemorrhage. Overall, we have developed a dietary model of VaD that will be valuable for studying the pathophysiology of VaD and also for studying the comorbidity of VaD with other dementias and other neurodegenerative disorders.
doi:10.1038/jcbfm.2013.1
PMCID: PMC3652696  PMID: 23361394
animal models; hemosiderin; homocysteinemia; inflammation; vascular dementia
2.  Genotype-Phenotype studies of VCP-associated Inclusion Body Myopathy with Paget Disease of Bone and/or Frontotemporal Dementia 
Clinical genetics  2012;83(5):422-431.
VCP disease associated with Inclusion body myopathy, Paget disease of the bone and frontotemporal dementia is a progressive autosomal dominant disorder caused by mutations in Valosin containing protein gene. To establish genotype-phenotype correlations we analyzed clinical and biochemical markers from a database of 190 members in 27 families harboring ten missense mutations. Individuals were grouped into three categories: symptomatic, presymptomatic carriers and non-carriers. The symptomatic families were further divided into ten groups based on their VCP mutations. There was marked intra and inter-familial variation; and significant genotype-phenotype correlations were difficult because of small numbers. Nevertheless when comparing the two most common mutations, R155C mutation was found to be more severe, with earlier onset of myopathy and Paget (p=0.03).
Survival analysis of all subjects revealed an average life span after diagnosis of myopathy and Paget of 18 and 19 years respectively, and after dementia only 6 years. R155C had a reduced survival compared to the R155H mutation (p=0.03). We identified amyotrophic lateral sclerosis (ALS) in thirteen individuals (8.9%) and Parkinson’s disease in five individuals (3%); however there was no genotypic correlation. This study represents the largest dataset of patients with VCP disease and expands our understanding of natural history and provides genotype-phenotype correlations in this unique disease.
doi:10.1111/cge.12000
PMCID: PMC3618576  PMID: 22909335
amyotrophic lateral sclerosis; frontotemporal dementia; genotype-phenotype; inclusion body myopathy; Paget’s disease of bone; valosin containing protein
3.  Synthesis of 5,7-disubstituted-4-methyl-7H-pyrrolo[2, 3-d]pyrimidin-2-amines as microtubule inhibitors 
Bioorganic & medicinal chemistry  2013;21(5):1180-1189.
Compounds 1-4 were previously reported as potent antimitotic and antitumor agents with Pgp modulatory effects. Compounds 5-18 have been synthesized in an attempt to optimize the various activities of 1-4. Compounds 5-10 explored the influence of methoxy substitutions on the 7-benzyl moiety in 1, while 11-18 investigated the influence of incorporation of a sulfur linker at C5 compared to 1-3. Compounds 5-10 demonstrated potent single-digit micromolar tumor cell cytotoxicity, Pgp modulation and microtubule inhibition. Compound 7 of this series was the most potent and showed GI50 values in the nanomolar range against several human tumor cell lines in the standard NCI preclinical in vitro screen. Antitumor activity and Pgp modulatory effects were found to decrease for the 5-phenylthio compounds 11-14 compared to their 5-phenylethyl analogs 2-4 and the standard compound Taxol. Incorporation of methoxy substitutions on the 7-benzyl moiety improved antitumor activity for the 5-phenylthio compounds 16 and 17. Compounds 16 and 17 demonstrated single to two-digit micromolar inhibition of tumor cells.
doi:10.1016/j.bmc.2012.12.029
PMCID: PMC3582361  PMID: 23352482
Pyrrolo[2,3-d]pyrimidines; Microtubule inhibitors; Microwave assisted organic synthesis
4.  Your Idea and Your University: Issues in Academic Technology Transfer 
Structured Abstract
Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved s/he will be in the commercialization process. In some cases a university out-licenses the intellectual property, while in other cases the investigator may want to be involved in the development process and choose to start his or her own company to develop, and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including: career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, as well as his or her ability to run a company or step aside to allow business experts to make necessary decisions. This article discusses some personal considerations in deciding to start a spin-out company and provides information on some of the available government grants to assist you should you decide to undertake your product’s commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies are often the source of very early funding for new biomedical companies.
doi:10.231/JIM.0b013e31820d0fdf
PMCID: PMC3660085  PMID: 21245769
Intellectual property; technology commercialization; faculty spin-out company; SBIR/STTR
5.  Structural Imaging in Early Pre-States of Dementia 
Biochimica et Biophysica Acta  2011;1822(3):317-324.
In this review focus is on structural imaging in the Alzheimer’s disease pre-states, particularly cognitively normal (CN) persons at future dementia risk. Findings in mild cognitive impairment (MCI) are described here only for comparison with CN. Cited literature evidence and commentary address issues of structural imaging alterations in CN that precede MCI and AD, regional patterns of such alterations, and the time relationship between structural imaging alterations and the appearance of symptoms of AD, issues relevant to the conduct of future AD prevention trials.
doi:10.1016/j.bbadis.2011.07.002
PMCID: PMC3223541  PMID: 21777674
review; human; mild cognitive impairment; Alzheimer’s disease; magnetic resonance imaging; morphometry; cognitive normality; normal aging
6.  Discovery of Novel Antitumor Antimitotic Agents That Also Reverse Tumor Resistance1 
Journal of medicinal chemistry  2007;50(14):10.1021/jm070194u.
We have discovered a novel series of 7-benzyl-4-methyl-5-[(2-substituted phenyl)ethyl]-7H-pyrrolo[2,3-d]-pyrimidin-2-amines, which possess antimitotic and antitumor activities against antimitotic-sensitive as well as resistant tumor cells. These agents bind to a site on tubulin that is distinct from the colchicine, vinca alkaloid, and paclitaxel binding sites and some, in addition to their antitumor activity, remarkably also reverse tumor resistance to antimitotic agents mediated via the P-glycoprotein efflux pump. The compounds were synthesized from N-(7-benzyl-5-ethynyl-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethylpro-panamide 11 or the corresponding 5-iodo analog 14 via Sonogashira couplings with appropriate iodobenzenes or phenylacetylene followed by reduction and deprotection to afford the target analogs. Sodium and liquid NH3 afforded the debenzylated analogs. The most potent analog 1 was one to three digit nanomolar against the growth of both sensitive and resistant tumor cells in culture. Compounds of this series are promising novel antimitotic agents that have the potential for treating both sensitive and resistant tumors.
doi:10.1021/jm070194u
PMCID: PMC3858178  PMID: 17567121
7.  Discovery and Evaluation of Inhibitors of Human Ceramidase 
Molecular cancer therapeutics  2011;10(11):2052-2061.
The ceramide/sphingosine-1-phosphate (S1P) rheostat has been hypothesized to play a critical role in regulating tumor cell fate, with elevated levels of ceramide inducing death and elevated levels of S1P leading to survival and proliferation. Ceramidases are key enzymes that control this rheostat by hydrolyzing ceramide to produce sphingosine, and may also confer resistance to drugs and radiation. Therefore, ceramidase inhibitors have excellent potential for development as new anticancer drugs. In this study, we identify a novel ceramidase inhibitor (Ceranib-1) by screening a small molecule library and describe the synthesis of a more potent analog (Ceranib-2). In a cell-based assay, both compounds were found to inhibit cellular ceramidase activity toward an exogenous ceramide analog, induce the accumulation of multiple ceramide species, decrease levels of sphingosine and S1P, inhibit the proliferation of cells alone and in combination with paclitaxel, and induce cell cycle arrest and cell death. In vivo, Ceranib-2 was found to delay tumor growth in a syngeneic tumor model without hematologic suppression or overt signs of toxicity. These data support the selection of ceramidases as suitable targets for anticancer drug development, and provide the first non-lipid inhibitors of human ceramidase activity.
doi:10.1158/1535-7163.MCT-11-0365
PMCID: PMC3213284  PMID: 21885864
Ceramidase; Ceramide; Inhibitor; Sphingosine; Tumor
8.  Ablation of Sphingosine Kinase-2 Inhibits Tumor Cell Proliferation and Migration 
Molecular cancer research : MCR  2011;9(11):1509-1519.
Sphingosine kinases (SK) regulate the balance between pro-apoptotic ceramides and mitogenic sphingosine-1-phosphate (S1P); however, the functions of the two isoenzymes (SK1 and SK2) in tumor cells are not well defined. Therefore, RNA interference was used to assess the individual roles of SK1 and SK2 in tumor cell sphingolipid metabolism, proliferation and migration/invasion. Treatment of A498, Caki-1 or MDA-MB-231 cells with siRNA specific for SK1 or SK2 effectively suppressed the expression of the target mRNA and protein. Ablation of SK1 did not affect mRNA or protein levels of SK2, and reduced intracellular levels of S1P while elevating ceramide levels. In contrast, ablation of SK2 elevated mRNA, protein and activity levels of SK1, and increased cellular S1P levels. Interestingly, cell proliferation and migration/invasion were suppressed more by SK2-selective ablation than by SK1-selective ablation, demonstrating that the increased S1P does not rescue these phenotypes. Similarly, exogenous S1P did not rescue the cells from the anti-proliferative or anti-migratory effects of the siRNAs. Consistent with these results, differential affects of SK1- and SK2-selective siRNAs on signaling proteins including p53, p21, ERK1, ERK2, FAK and VCAM1 indicate that SK1 and SK2 have only partially overlapping functions in tumor cells. Overall, these data indicate that loss of SK2 has stronger anticancer effects than does suppression of SK1. Consequently, selective inhibitors of SK2 may provide optimal targeting of this pathway in cancer chemotherapy.
doi:10.1158/1541-7786.MCR-11-0336
PMCID: PMC3219805  PMID: 21896638
Sphingosine Kinase; Isoenzyme; siRNA; Proliferation; Migration; Anticancer
9.  Sorafenib Sensitizes Solid Tumors to Apo2L/TRAIL and Apo2L/TRAIL Receptor Agonist Antibodies by the Jak2-Stat3-Mcl1 Axis 
PLoS ONE  2013;8(9):e75414.
Background
Approximately half of tumor cell lines are resistant to the tumor-selective apoptotic effects of tumor necrosis factor-related apoptosis-inducing ligand (Apo22L/TRAIL). Previously, we showed that combining Apo2L/TRAIL with sorafenib, a multikinase inhibitor, results in dramatic efficacy in Apo2L/TRAIL-resistant tumor xenografts via inhibition of Mcl-1. Soluble Apo2L/TRAIL is capable of binding to several surface receptors, including the pro-apoptotic death receptors, DR4 and DR5, and decoy receptors, DcR1 and DcR2. Monoclonal antibodies targeting either of these death receptors are being investigated as antitumor agents in clinical trials. We hypothesized that sorafenib and Apo2L/TRAIL or Apo2L/TRAIL death receptor agonist (TRA) antibodies against DR4 (mapatumumab) and DR5 (lexatumumab) will overcome resistance to Apo2L/TRAIL-mediated apoptosis and as increase antitumor efficacy in Apo2L/TRAIL-sensitive solid tumors.
Methodology/Principal Findings
We found that Apo2L/TRAIL or TRA antibodies combined with sorafenib synergistically reduce cell growth and increase cell death across a panel of solid tumor cell lines in vitro. This panel included human breast, prostate, colon, liver and thyroid cancers. The cooperativity of these combinations was also observed in vivo, as measured by tumor volume and TUNEL staining as a measure of apoptosis. We found that sorafenib inhibits Jak/Stat3 signaling and downregulates their target genes, including cyclin D1, cyclin D2 and Mcl-1, in a dose-dependent manner.
Conclusions/Significance
The combination of sorafenib with Apo2L/TRAIL or Apo2L/TRAIL receptor agonist antibodies sensitizes Apo2L/TRAIL-resistant cells and increases the sensitivity of Apo2L/TRAIL-sensitive cells. Our findings demonstrate the involvement of the Jak2-Stat3-Mcl1 axis in response to sorafenib treatment, which may play a key role in sorafenib-mediated sensitization to Apo2L/TRAIL.
doi:10.1371/journal.pone.0075414
PMCID: PMC3784419  PMID: 24086526
10.  NOVEL ATYPICAL PKC INHIBITORS PREVENT VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED BLOOD-RETINAL BARRIER DYSFUNCTION 
The Biochemical journal  2012;446(3):455-467.
SYNOPSIS
Pro-inflammatory cytokines and growth factors such as vascular endothelial growth factor (VEGF) contribute to the loss of the blood-retinal barrier (BRB) and subsequent macular edema in various retinal pathologies. VEGF signaling requires conventional PKC (PKCβ) activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability suggesting the involvement of alternative signaling pathways. Here, we provide evidence for the involvement of atypical protein kinase C (aPKC) signaling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small molecule inhibitors and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. These data suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis and the blood-brain barrier (BBB) in the presence of brain tumors.
doi:10.1042/BJ20111961
PMCID: PMC3767384  PMID: 22721706
vascular endothelial growth factor (VEGF); atypical protein kinase C (aPKC); blood-retinal barrier (BRB); blood-brain barrier (BBB)
11.  Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts 
Cancer Biology & Therapy  2011;11(5):524-534.
The balance between the pro-apoptotic lipids ceramide and sphingosine and the pro-survival lipid sphingosine 1-phosphate (S1P) is termed the “sphingosine rheostat”. Two isozymes, sphingosine kinase 1 and 2 (SK1 and SK2), are responsible for phosphorylation of pro-apoptotic sphingosine to form pro-survival S1P. We have previously reported the antitumor properties of an SK2 selective inhibitor, ABC294640, alone or in combination with the multikinase inhibitor sorafenib in mouse models of kidney carcinoma and pancreatic adenocarcinoma. Here, we evaluated the combined antitumor effects of the aforementioned drug combination in two mouse models of hepatocellular carcinoma. Although combining the SK2 inhibitor, ABC294640 and sorafenib in vitro only afforded additive drug-drug effects, their combined antitumor properties in the mouse model bearing HepG2 cells mirrored effects previously observed in animals bearing kidney carcinoma and pancreatic adenocarcinoma cells. Combining ABC294640 and sorafenib led to a decrease in the levels of phosphorylated ERK in SK-HEP -1 cells, indicating that the antitumor effect of this drug combination is likely mediated through a suppression of the MAPK pathway in hepatocellular models. We also measured levels of S1P in the plasma of mice treated with two different doses of ABC294640 and sorafenib. We found decreases in the levels of S1P in plasma of mice treated daily with 100 mg/kg of ABC294640 for 5 weeks, and this decrease was not affected by coadministration of sorafenib. Taken together, these data support combining ABC294640 and sorafenib in clinical trials in HCC patients. Furthermore, monitoring levels of S1P may provide a pharmacodynamic marker of ABC294640 activity.
doi:10.4161/cbt.11.5.14677
PMCID: PMC3087901  PMID: 21258214
pharmacodynamics; targeted therapy; sphingosine kinase; hepatocellular carcinoma
12.  Lifelong Bilingualism Maintains Neural Efficiency for Cognitive Control in Aging 
Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task switching paradigm, and including a total of 110 participants. In Experiment 1, older adult bilinguals showed better perceptual switching performance than their monolingual peers. In Experiment 2, younger and older adult monolinguals and bilinguals completed the same perceptual task switching experiment while fMRI was performed. Typical age-related performance reductions and fMRI activation increases were observed. However, like younger adults, bilingual older adults outperformed their monolingual peers while displaying decreased activation in left lateral frontal cortex and cingulate cortex. Critically, this attenuation of age-related over-recruitment associated with bilingualism was directly correlated with better task switching performance. In addition, the lower BOLD response in frontal regions accounted for 82% of the variance in the bilingual task switching reaction time advantage. These results suggest that lifelong bilingualism offsets age-related declines in the neural efficiency for cognitive control processes.
doi:10.1523/JNEUROSCI.3837-12.2013
PMCID: PMC3710134  PMID: 23303919
13.  Adjusting for mortality when identifying risk factors for transitions to MCI and dementia 
Risk factors for mild cognitive impairment (MCI) and dementia are often investigated without accounting for the competing risk of mortality, which can bias results and lead to spurious conclusions, particularly regarding protective factors. Here, we apply a semi-Markov modeling approach to 531 participants in the University of Kentucky Biologically Resilient Adults in Neurological Studies (BRAiNS) longitudinal cohort, over one-third of whom died without transitioning to a cognitively impaired clinical state. A semi-Markov approach enables a statistical study of clinical state transitions while accounting for the competing risk of death and facilitates insights into both the odds that a risk factor will affect clinical transitions as well as the age at which the transition to MCI or dementia will occur. Risk factors assessed in the current study were identified by matching those reported in the literature with the data elements collected on participants. The presence of Type II diabetes at baseline shortens the time it takes cognitively intact individuals to transition to MCI by seven years on average while use of estrogen replacement therapy at enrollment (baseline) decreases the time required to convert from MCI to dementia by 1.5 years. Finally, smoking and being overweight do not promote transitions to impaired states but instead hasten death without a dementia. In contrast, conventional statistical analyses based on Cox proportional hazards models fail to recognize diabetes as a risk and show that being overweight increases the risk of clinical MCI while high blood pressure at baseline increases the risk of a dementia.
doi:10.3233/JAD-122146
PMCID: PMC3703851  PMID: 23507772
MCI; dementia; multi-state models; semi-Markov; risk factors; competing events
14.  Structural Brain Alterations before Mild Cognitive Impairment in ADNI: Validation of Volume Loss in a Predefined Antero-Temporal Region 
Journal of Alzheimer's disease : JAD  2012;31(0 3):S49-S58.
Volume losses in the medial temporal lobe, posterior cingulated, and orbitofrontal region have been observed in Alzheimer’s disease (AD). Smaller reductions in similar regions have also been reported in amnestic mild cognitive impairment (aMCI), a canonical precursor to AD. We previously demonstrated that volume loss in bilateral anteromedial temporal lobe is present at baseline in longitudinally followed normal subjects who later developed MCI or AD. In this study we compared grey matter volumes within this predefined anteromedial temporal region (AMTR) at baseline between: 1) normal subjects enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) who subsequently developed cognitive complaints as reflected in a CDR memory box score of 0.5; and 2) normal subjects who remained normal over a median of 48 months of follow-up (CDR sum of boxes 0). We found significantly decreased volume within AMTR in the ADNI memory complainers. To relate AMTR results to those from conventional anatomy, we demonstrate that volumes extracted with the ICBM amygdala region had the best correspondence with AMTR volumes. In contrast, regions that have demonstrated volume loss in frank MCI and AD in ADNI, e.g., the posterior cingulate, did not show volume loss. These findings provide independent confirmation that volume changes preceding MCI occur in AMTR, a region of overlap between amygdala and anterior hippocampus.
doi:10.3233/JAD-2012-120157
PMCID: PMC3652624  PMID: 22460332
Alzheimer’s Disease Neuroimaging Initiative; Alzheimer’s disease risk; amygdala; brain aging; hippocampus; longitudinal studies; magnetic resonance imaging; medial temporal lobe; structural neuroimaging; voxel-based morphometry
15.  DHHC20: a human palmitoyl acyltransferase that causes cellular transformation 
Molecular membrane biology  2010;27(2-3):123-136.
Palmitoylation is required for the activities of several cancer-associated proteins, making the palmitoyl acyltransferase (PAT) enzymes that catalyze these reactions potential targets for anticancer therapeutics. In this study, we sought to identify and characterize a human PAT with activity toward N-terminally myristoylated and palmitoylated proteins. NIH/3t3 cells were stably transfected with vectors containing no insert, wild type human DHHC20, or a serine-substituted DHHS20 mutant. Compared with control cells, cells overexpressing wild-type DHHC20 displayed an increase in palmitoylation activity toward a peptide that mimics the N-terminus of myristoylated and palmitoylated proteins, but had no change in activity toward a peptide that mimics the C-terminus of farnesylated and palmitoylated proteins. Cells expressing DHHS20 had no significant change in activity toward either peptide. Overexpression of DHHC20 also caused phenotypic changes consistent with cellular transformation, including colony formation in soft agar, decreased contact inhibition of growth, and increased proliferation under low-serum conditions. Quantitative polymerase chain reaction analyses of human tissues demonstrated that DHHC20 is expressed in a tissue-specific manner, and is overexpressed in several types of human tumors, including ovarian, breast and prostate. Overall, these results demonstrate that DHHC20 is a human N-terminal-myristoyl-directed PAT involved in cellular transformation, that may play a role in cancer.
doi:10.3109/09687681003616854
PMCID: PMC2893407  PMID: 20334580
DHHC; myristoyl; palmitoyl acyltransferase; palmitoylation; proliferation
16.  Partial Least Squares for Discrimination in fMRI Data 
Magnetic Resonance Imaging  2012;30(3):446-452.
Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk.
doi:10.1016/j.mri.2011.11.001
PMCID: PMC3288364  PMID: 22227352
pattern; classification; neuro; imaging; biomarker; Alzheimer's disease
17.  Two N-Myristoyltransferase Isozymes Play Unique Roles in Protein Myristoylation, Proliferation, and Apoptosis 
Molecular cancer research : MCR  2005;3(8):463-476.
N-myristoyltransferases (NMT) add myristate to the NH2 termini of certain proteins, thereby regulating their localization and/or biological function. Using RNA interference, this study functionally characterizes the two NMT isozymes in human cells. Unique small interfering RNAs (siRNA) for each isozyme were designed and shown to decrease NMT1 or NMT2 protein levels by at least 90%. Ablation of NMT1 inhibited cell replication associated with a loss of activation of c-Src and its target FAK as well as reduction of signaling through the c-Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway. Terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assays showed that depletion of either NMT isozyme induced apoptosis, with NMT2 having a 2.5-fold greater effect than NMT1. Western blot analyses revealed that loss of NMT2 shifted the expression of the BCL family of proteins toward apoptosis. Finally, intratumoral injection of siRNA for NMT1 or for both NMT1 and NMT2 inhibited tumor growth in vivo, whereas the same treatment with siRNA for NMT2 or negative control siRNA did not. Overall, the data indicate that NMT1 and NMT2 have only partially overlapping functions and that NMT1 is critical for tumor cell proliferation.
doi:10.1158/1541-7786.MCR-05-0037
PMCID: PMC2908404  PMID: 16123142
18.  White matter integrity and vulnerability to Alzheimer's disease: Preliminary findings and future directions 
Biochimica et Biophysica Acta  2011;1822(3):416-422.
Neuroimaging biomarkers that precede cognitive decline have the potential to aid early diagnosis of Alzheimer's disease (AD). A body of diffusion tensor imaging (DTI) work has demonstrated declines in white matter (WM) microstructure in AD and its typical prodromal state, amnestic mild cognitive impairment. The present review summarizes recent evidence suggesting that WM integrity declines are present in individuals at high AD-risk, prior to cognitive decline. The available data suggest that AD-risk is associated with WM integrity declines in a subset of tracts showing decline in symptomatic AD. Specifically, AD-risk has been associated with WM integrity declines in tracts that connect grey matter structures associated with memory function. These tracts include parahippocampal WM, the cinglum, the inferior fronto-occipital fasciculus, and the splenium of the corpus callosum. Preliminary evidence suggests that some AD-risk declines are characterized by increases of radial diffusivity, raising the possibility that a myelin-related pathology may contribute to AD onset. These findings justify future research aimed at a more complete understanding of the neurobiological bases of DTI-based declines in AD. With continued refinement of imaging methods, DTI holds promise as a method to aid identification of presymptomatic AD.
doi:10.1016/j.bbadis.2011.07.009
PMCID: PMC3213315  PMID: 21803153
DTI; diffusion tensor imaging; APOE; presymptomatic; Alzheimer's; Alzheimer's risk
19.  N-Myristoyltransferase isozymes exhibit differential specificity for human immunodeficiency virus type 1 Gag and Nef 
The Journal of general virology  2008;89(Pt 1):288-296.
Myristoylation of the human immunodeficiency virus type 1 (HIV-1) proteins Gag and Nef by N-myristoyltransferase (NMT) is a key process in retroviral replication and virulence, yet remains incompletely characterized. Therefore, the roles of the two isozymes, NMT1 and NMT2, in myristoylating Gag and Nef were examined using biochemical and molecular approaches. Fluorescently labelled peptides corresponding to the N terminus of HIV-1 Gag or Nef were myristoylated by recombinant human NMT1 and NMT2. Kinetic analyses indicated that NMT1 and NMT2 had 30- and 130-fold lower Km values for Nef than Gag, respectively. Values for Kcat indicated that, once Gag or Nef binds to the enzyme, myristoylation by NMT1 and NMT2 proceeds at comparable rates. Furthermore, the catalytic efficiencies for the processing of Gag by NMT1 and NMT2 were equivalent. In contrast, NMT2 had approximately 5-fold higher catalytic efficiency for the myristoylation of Nef than NMT1. Competition experiments confirmed that the Nef peptide acts as a competitive inhibitor for the myristoylation of Gag. Experiments using full-length recombinant Nef protein also indicated a lower Km for Nef myristoylation by NMT2 than NMT1. Small interfering RNAs were used to selectively deplete NMT1 and/or NMT2 from HEK293T cells expressing a recombinant Nef–sgGFP fusion protein. Depletion of NMT1 had minimal effect on the intracellular distribution of Nef–sgGFP, whereas, depletion of NMT2 altered distribution to a diffuse, widespread pattern, mimicking that of a myristoylation-deficient mutant of Nef–sgGFP. Together, these findings indicate that Nef is preferentially myristoylated by NMT2, suggesting that selective inhibition of NMT2 may provide a novel means of blocking HIV virulence.
doi:10.1099/vir.0.83412-0
PMCID: PMC2888270  PMID: 18089753
20.  Sphingosine Kinase-2 Inhibition Improves Mitochondrial Function and Survival after Hepatic Ischemia-Reperfusion 
Journal of hepatology  2011;56(1):137-145.
Background/Aims
The mitochondrial permeability transition (MPT) and inflammation play important roles in liver injury caused by ischemia-reperfusion (IR). This study investigated the roles of sphingosine kinase-2 (SK2) in mitochondrial dysfunction and inflammation after hepatic IR.
Methods
Mice were gavaged with vehicle or ABC294640 (50 mg/kg), a selective inhibitor of SK2, 1 h before surgery and subjected to 1 h-warm ischemia to ~70% of the liver followed by reperfusion.
Results
Following IR, hepatic SK2 mRNA and sphingosine-1-phosphate (S1P) levels increased ~25-fold and 3-fold, respectively. SK2 inhibition blunted S1P production and liver injury by 54% to 91%, and increased mouse survival from 28% to 100%. At 2 h after reperfusion, mitochondrial depolarization was observed in 74% of viable hepatocytes, and mitochondrial voids excluding calcein disappeared, indicating MPT onset in vivo. SK2 inhibition decreased mitochondrial depolarization and prevented MPT onset. Inducible nitric oxide synthase, phosphorylated NFκB-p65, TNFα mRNA, and neutrophil infiltration all increased markedly after hepatic IR, and these increases were blunted by SK2 inhibition. In cultured hepatocytes, anoxia/reoxygenation resulted in increases of SK2 mRNA, S1P levels and cell death. SK2 siRNA and ABC294640 each substantially decreased S1P production and cell death in cultured hepatocytes.
Conclusions
SK2 plays an important role in mitochondrial dysfunction, inflammation responses, hepatocyte death and survival after hepatic IR and represents a new target for the treatment of IR injury.
doi:10.1016/j.jhep.2011.05.025
PMCID: PMC3220779  PMID: 21756852
inflammation; ischemia/reperfusion; liver; mitochondrial permeability transition; sphingosine kinase; sphingosine-1-phosphate
21.  Combined anticancer effects of sphingosine kinase inhibitors and sorafenib 
Investigational new drugs  2010;29(6):1132-1142.
Summary
The pro-apoptotic lipid sphingosine is phosphorylated by sphingosine kinases 1 and 2 (SK1 and SK2) to generate the mitogenic lipid sphingosine-1-phosphate (S1P). We previously reported that inhibition of SK activity delays tumor growth in a mouse mammary adenocarcinoma model. Because SK inhibitors and the multikinase inhibitor sorafenib both suppress the MAP kinase pathway, we hypothesized that their combination may provide enhanced inhibition of tumor growth. Therefore, we evaluated the effects of two SK inhibitors, ABC294640 (a SK2-specific inhibitor) and ABC294735 (a dual SK1/SK2 inhibitor), alone and in combination with sorafenib on human pancreatic adenocarcinoma (Bxpc-3) and kidney carcinoma (A-498) cells in vitro and in vivo. Exposure of either Bxpc-3 or A-498 cells to combinations of ABC294640 and sorafenib or ABC294735 and sorafenib resulted in synergistic cytotoxicity, associated with activation of caspases 3/ 7 and DNA fragmentation. Additionally, strong decreases in ERK phosphorylation were observed in Bxpc-3 and A-498 cells exposed to either the sorafenib/ABC294640 or the sorafenib/ABC294735 combination. Oral administration of either ABC294640 or ABC294735 to mice led to a delay in tumor growth in both xenograft models without overt toxicity to the animals. Tumor growth delay was potentiated by co-administration of sorafenib. These studies show that combination of an SK inhibitor with sorafenib causes synergistic inhibition of cell growth in vitro, and potentiates antitumor activity in vivo. Thus, a foundation is established for clinical trials evaluating the efficacy of combining these signaling inhibitors.
doi:10.1007/s10637-010-9452-0
PMCID: PMC3089696  PMID: 20473784
Targeted therapy; Sphingosine kinase; Sorafenib; Apoptosis; MAPK pathway
22.  Suppression of Ulcerative Colitis in Mice by Orally-Available Inhibitors of Sphingosine Kinase 
Digestive diseases and sciences  2007;53(4):997-1012.
A critical step in the mechanism of action of inflammatory cytokines is the stimulation of sphingolipid metabolism, including activation of sphingosine kinase (SK) which produces the mitogenic and pro-inflammatory lipid sphingosine 1-phosphate (S1P). We have developed orally-bioavailable compounds that effectively inhibit SK activity in vitro, in intact cells and in cancer models in vivo. In the present study, we have assessed the effects of these SK inhibitors on cellular responses to TNFα, and evaluated their efficacies in the dextran sulfate sodium (DSS) model of ulcerative colitis in mice. Using several cell systems, it was shown that the SK inhibitors block the ability of TNFα to: activate NFκB; induce the expression of adhesion proteins; and promote the production of PGE2. In an acute model of DSS-induced ulcerative colitis, the SK inhibitors were equivalent to or more effective than Dipentum in reducing disease progression, colon shortening, and neutrophil infiltration into the colon. The effects of the SK inhibitors were associated with decreased colonic levels of the inflammatory cytokines TNFα, IL-1β, IFN-γ and IL-6, and reduction of S1P levels in the colon. A similar reduction in disease progression was provided by the SK inhibitors in a chronic model of ulcerative colitis in which the mice received three week-long cycles of DSS interspaced with week-long recovery periods. In the chronic model, immunohistochemistry for SK showed increased expression in DSS treated mice (compared to water controls) that was reduced by drug treatment. S1P levels were also elevated in the DSS group and significantly reduced by drug treatment. Together, these data indicate that SK is a critical component in inflammation, and that inhibitors of this enzyme may be useful in the treatment of inflammatory bowel diseases.
doi:10.1007/s10620-007-0133-6
PMCID: PMC2660406  PMID: 18058233
Sphingosine kinase; Inflammatory Bowel Disease; Ulcerative colitis; TNFα
23.  Pharmacologic manipulation of sphingosine kinase in retinal endothelial cells: Implications for angiogenic ocular diseases 
Purpose
The increased vascular permeability and pathogenic angiogenesis observed in diabetic retinopathy are induced, at least in part, by local inflammation and vascular endothelial growth factor (VEGF). Therefore, inhibition of signaling from VEGF and tumor necrosis factor α (TNFα) is a promising approach to the treatment of this disease, as well as ocular diseases with similar etiologies, including age-related macular degeneration. A growing body of evidence demonstrates that sphingosine kinase (SK) plays an important role in cellular proliferation and angiogenesis. Therefore, we have examined the effects of SK inhibitors on the responses of retinal endothelial cells (RECs) to VEGF and TNFα, and their therapeutic efficacy in a diabetic retinopathy model.
Methods
The expression and function of SK in bovine and human RECs were examined by immunoblotting. The involvement of SK in mediating responses to VEGF and TNFα was examined using pharmacological inhibitors of SK in cellular and in vivo assays, including a 3-month streptozotocin-induced diabetic retinopathy model in rats.
Results
We demonstrate that SK is present and active in human and bovine RECs, and that SK activity in these cells is stimulated by VEGF. Inhibitors of SK block VEGF-induced production of sphingosine 1-phosphate, and markedly attenuate VEGF-induced proliferation and migration of RECs. Additionally, SK inhibitors are shown to block TNFα-induced expression of adhesion proteins, suppress VEGF-induced vascular leakage in an in vivo mouse model, and reduce retinal vascular leakage in the rat diabetic retinopathy model.
Conclusion
Overall, these studies demonstrate that inhibitors of SK attenuate the effects of proliferative and inflammatory stimuli on RECs both in vitro and in vivo, and so could be significant therapeutics in the treatment of diabetic retinopathy.
doi:10.1167/iovs.05-1236
PMCID: PMC2660407  PMID: 17065523
Sphingosine kinase; Diabetic retinopathy; Macular degeneration; Retinal endothelial cells; Angiogenesis; VEGF; TNFα
24.  Palmitoyl acyltransferase assays and inhibitors (Review) 
Molecular membrane biology  2009;26(1):5-13.
Palmitoylated proteins have been implicated in several disease states including Huntington’s, cardiovascular, T-cell mediated immune diseases, and cancer. To proceed with drug discovery efforts in this area, it is necessary to: identify the target enzymes, establish efficient assays for palmitoylation, and conduct high-throughput screening to identify inhibitors. The primary objectives of this review are to examine the types of assays used to study protein palmitoylation and to discuss the known inhibitors of palmitoylation. Six main palmitoylation assays are currently in use. Four assays, radiolabeled palmitate incorporation, fatty acyl exchange chemistry, MALDI-TOF MS and azido-fatty acid labeling are useful in the identification of palmitoylated proteins and palmitoyl acyltransferase (PAT) enzymes. Two other methods, the in vitro palmitoylation (IVP) assay and a cell-based peptide palmitoylation assay, are useful in the identification of PAT enzymes and are more amenable to screening for inhibitors of palmitoylation. To date, two general types of palmitoylation inhibitors have been identified. Lipid-based palmitoylation inhibitors broadly inhibit the palmitoylation of proteins; however, the mechanism of action of these compounds is unknown, and each also has effects on fatty acid biosynthesis. Conversely, several non-lipid palmitoylation inhibitors have been shown to selectively inhibit the palmitoylation of different PAT recognition motifs. The selective nature of these compounds suggests that they may act as protein substrate competitors, and may produce fewer non-specific effects. Therefore, these molecules may serve as lead compounds for the further development of selective inhibitors of palmitoylation, which may lead to new therapeutics for cancer and other diseases.
doi:10.1080/09687680802683839
PMCID: PMC2635919  PMID: 19152182
Palmitoyl acyltransferase; inhibitor; 2-bromopalmitate; cerulenin; tunicamycin
25.  Multimodal Imaging Evidence for Axonal and Myelin Deterioration in Amnestic Mild Cognitive Impairment 
White matter (WM) microstructural declines have been demonstrated in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI). However, the pattern of WM microstructural changes in aMCI after controlling for WM atrophy is unknown. Here, we address this issue through joint consideration of aMCI alterations in fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, as well as macrostructural volume in WM and gray matter compartments. Participants were 18 individuals with aMCI and 24 healthy seniors. Voxelwise analyses of diffusion tensor imaging data was carried out using tract-based spatial statistics (TBSS) and voxelwise analyses of high-resolution structural data was conducted using voxel based morphometry. After controlling for WM atrophy, the main pattern of TBSS findings indicated reduced fractional anisotropy with only small alterations in mean diffusivity/radial diffusivity/axial diffusivity. These WM microstructural declines bordered and/or were connected to gray matter structures showing volumetric declines. However, none of the potential relationships between WM integrity and volume in connected gray matter structures was significant, and adding fractional anisotropy information improved the classificatory accuracy of aMCI compared to the use of hippocampal atrophy alone. These results suggest that WM microstructural declines provide unique information not captured by atrophy measures that may aid the magnetic resonance imaging contribution to aMCI detection.
doi:10.3233/JAD-2012-112165
PMCID: PMC3448019  PMID: 22460327
Alzheimer’s disease; atrophy; diffusion tensor imaging; mild cognitive impairment

Results 1-25 (66)