Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
PMCID: PMC3965205  PMID: 20429219
Tolerance; NFκB; Lipid A; LPS; cancer; toll receptors; proteasome
2.  Nutritional Supplement-5 with a Combination of Proteasome Inhibitors (Resveratrol, Quercetin, δ-Tocotrienol) Modulate Age-Associated Biomarkers and Cardiovascular Lipid Parameters in Human Subjects 
Age-associated altered redox imbalances and dysregulated immune function, contribute to the development of a variety of age associated diseases. Inflammatory markers and lipid profiles are useful prognostic indicators of a variety of age-associated and cardiovascular diseases. We have previously studied the impact of several proteasome inhibitors on several markers of inflammation and lipid profiles in vitro, in vivo, in cell lines, animal models, and in human subjects. The current study represents an extension of this work. Our main hypothesis is that a combination of various naturally-occurring proteasome inhibitors, which inhibits nitric oxide (NO), and C-reactive protein (CRP) mediated inflammation, will have better efficacy in the prevention and treatment of age-associated disorders including cardiovascular disease.
Two double blind, randomized, placebo-controlled cross-over trials were conducted to determine the impact of a mixture of NS-5 (resveratrol, pterostilbene, quercetin, δ-tocotrienol, nicotinic acid) on serum NO, CRP, γ-glutamyl-transferase (γ-GT) activity, total antioxidant status (TAS), total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides levels. Healthy seniors (Group-1; n = 32) free-living (A, B; 16/group), and hypercholesterolemic (Group-2; n = 64) subjects on AHA-Step-1-diet were divided into two groups (C, D; 32/group). Baseline levels were established for parameters as mentioned above. Groups A, C were administered 4-capsules/d of NS-5 and groups B, D, placebo (starch) for 6-weeks. Groups were crossed-over, followed by a 2-week wash-out period. Groups A, C were given 4-capsules/d of placebo and groups B, D, 4-capsules/d of NS-5 for 6-weeks. Groups C, D were continued on AHA-Step-1-diet.
All the subjects completed each phase in both studies without any complaints. There were significant (P < 0.01 – 0.05) decreases in the serum levels of NO (30%, 26%), CRP (29%, 21%), γ-GT activity (14%, 17%), and blood pressure (systolic/diastolic, 3/6%, 3/3%) of Groups A and B, respectively, of free-living healthy seniors without affecting the total, HDL-, LDL-cholesterol or triglycerides compared to their respective baseline values. However, serum levels of NO (36%, 43%), CRP (31%, 48%), γ-GT (17%, 20%), total cholesterol (19%, 15%), LDL-cholesterol (28%, 20%), triglycerides (11%, 18%) of Groups C and D were significantly (P < 0.01-0.05) decreased with NS-5 treatment of hypercholesterolemic subjects compared to baseline values, without affecting the serum HDL-cholesterol levels. The serum levels of total antioxidant status (TAS) were increased (10%, 14%; P < 0.05) in Groups A and B, increased (19%, 24%; P < 0.02), and blood pressure (systolic/diastolic, 5/6%, 3/5%) in Groups C and D with NS-5 treatment, compared to respective baseline values.
The consumption of NS-5 mixture decreased significantly serum NO, CRP and γ-GT levels, improved TAS and lipid profiles at risk cardiovascular and hold promise for delaying onset of age-associated diseases.
PMCID: PMC3851026  PMID: 24319627
Anti-inflammatory and anti-ageing agents; Resveratrol; Quercetin; δ-tocotrienol; Nitric oxide (NO); C-reactive protein (CRP); γ-glutamyl-transferase (γ-GT); Total antioxidant status (TAS)
Biochimica et biophysica acta  2012;1823(11):2087-2093.
We have previously demonstrated that the proteasome serves as a central regulator of inflammation and macrophage function. Until recently, proteasomes have generally been considered to play a relatively passive role in regulation of cellular activity, i.e., any ubiquitinated protein was considered to be in discriminatively targeted for degradation by the proteasome. We have demonstrated, however, by using specific proteasome protease inhibitors and knockout mice lacking specific components of immunoproteasomes, that proteasomes (containing X, Y, and Z protease subunits) and immunoproteasomes (containing LMP7, LMP2, and LMP10 protease subunits) have well-defined functions in cytokine induction and inflammation based on their individual protease activities. We have also shown that LPS-TLR mediated signaling in the murine RAW 264.7 macrophage cell line results in the replacement of macrophage immunoproteasomal subunits. Such modifications serve as pivotal regulators of LPS-induced inflammation. Our findings support the relatively novel concept that defects in structure/function of proteasome protease subunits caused by genetic disorders, aging, diet, or drugs may well have the potential to contribute to modulation of proteasome activity. Of particular relevance, we have identified quercetin and resveratrol, significant constituents present in berries and of red wine respectively, as two novel proteasome inhibitors that have been previously implicated as disease-modifying natural products. We posit that natural proteasome inhibitors/activators can potentially be used as therapeutic response modifiers to prevent/treat diseases through pathways involving the ubiquitin-proteasome pathway (UP-pathway), which likely functions as a master regulator involved in control of overall inflammatory responses.
PMCID: PMC3465503  PMID: 22728331
proteasome; cytokines; resveratrol; quercetin; proteasome inhibitors; LMP knockout mice
4.  Suppression of Nitric Oxide Production and Cardiovascular Risk Factors in Healthy Seniors and Hypercholesterolemic Subjects by a Combination of Polyphenols and Vitamins 
Dysregulated immune function associated with ageing has been implicated in a variety of human diseases. We have demonstrated the anti-inflammatory properties of resveratrol, pterostilbene, morin hydrate, quercetin, δ-tocotrienol, riboflavinin a variety of experimental animal models, and determined that these compounds act by inhibiting proteasome activity.
To determine whether serum nitric oxide (NO) levels increase with age in humans, and whether the combined cholesterol-lowering and inflammation-reducing properties of resveratrol, pterostilbene, Morin hydrate, quercetin, δ-tocotrienol, riboflavin, and nicotinic acid would reduce cardiovascular risk factors in humans when used as nutritional supplements with, or without, other dietary changes.
Elderly human subjects were stratified into two groups based on total serum cholesterol levels. Initial total serum cholesterol levels were normal and elevated in Group 1 and 2 subjects, respectively. Baseline serum NO, C-reactive protein (CRP), γ-glutamyltransferase (γ-GT) activity, uric acid, total antioxidant status (TAS), total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides levels were established over a four week period. Group 1 subjects subsequently received nutritional supplementation with one of two different combinations (NS-7 = 25 mg of each, resveratrol, pterostilbene, quercetin, δ-tocotrienol, nicotinic acid, morin hydrate or NS-6 = morin hydrate replaced with quercetin, 50 mg/capsule). Group 2 subjects also received these nutritional supplements (two capsules/d), but an AHA Step-1 diet was also implemented. After these interventions were administered for four weeks, the above parameters were re-measured and changes from baseline levels determined. Nitric acid (NO) levels in children, young adults, and seniors were also compared.
The key results of the current study were: 1) that serum NO levels were significantly increased in seniors compared to both children (~80%) and young adults (~65%); 2) that the intake of two capsules/d of NS-7 or NS-6 for four weeks significantly (P < 0.05) decreased serum NO (39%, 24%), CRP (19%, 21%), uric acid (6%, 12%) levels, and γ-GT activity (8%, 6%), respectively in free-living healthy seniors; 3) that serum NO (36%, 29%), CRP (29%, 20%), uric acid (6%, 9%) γ-GT activity (9%, 18%), total cholesterol (8%, 11%), LDL-cholesterol (10%, 13%), and triglycerides (16%, 23%) levels were significantly (P < 0.02) decreased in hypercholesterolemic subjects restricted to AHA Step-1 diet plus intake of SN-7 or SN-6 (two capsules/d), respectively; 4) that TAS was increased (3%, 9%; P < 0.05) in free-living healthy seniors receiving NS-7 or NS-6 alone, and in hypercholesterolemic subjects plus AHA Step-1 diet (20%, 12%; P < 0.02) with either of the combinations tested.
Serum NO levels are elevated in elderly humans compared to children or young adults. Diet supplementation with combinations of resveratrol, pterostilbene, morin hydrate, quercetin, δ-tocotrienol, riboflavin, and nicotinic acid reduce cardiovascular risk factors in humans when used as nutritional supplements with, or without, other dietary changes.
PMCID: PMC3486425  PMID: 23125945
Resveratrol; Quercetin; δ-Tocotrienol; C-Reactive Protein; Nitric Oxide (NO); Tumor Necrosis Factor-alpha (TNF-α); Lipid Parameters
5.  A Critical Role for the Inducible Proteasomal Subunits LMP7 and MECL1 in Cytokine Production by Activated Murine Splenocytes 
Pharmacology  2012;89(3-4):117-126.
Background and Purpose
The proteasome is a multi-subunit complex that proteolytically cleaves proteins. The replacement of the constitutive proteasome subunits β1, β2, and/or β5 with the IFNγ-inducible subunits LMP2, MECL1, and/or LMP7 results in the ‘immunoproteasome’. The inducible subunits change the cleavage specificities of the proteasome, but it is unclear whether they have functions in addition to this. The purpose of the present study was to determine the role of the proteasome in general, as well as LMP7 and MECL1 specifically, with regard to cytokine production by activated primary splenocytes.
A LMP7/MECL1-null mouse was engineered to determine the roles of these subunits in cytokine production. Isolated splenocytes from wild-type and LMP7/MECL1–/– mice were treated with lactacystin and activated with PMA and ionomycin and subsequently cytokine mRNA levels were quantified.
The present study demonstrates that LMP7/MECL1 regulates the expression of IFNγ, IL4, IL10, IL2Rβ, GATA3, and t-bet. In contrast, the regulation of IL2, IL13, TNFα, and IL2Rα by the proteasome appears to occur independently of LMP7/MECL1.
Collectively, the present study demonstrates that LMP7 and MECL1 regulate cytokine expression, suggesting this system represents a novel mechanism for the regulation of cytokines and cytokine signaling.
PMCID: PMC3702019  PMID: 22398747
Cytokines; GATA3; LMP7; MECL1; Proteasomes; Splenocytes
6.  Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor 
Altered immune function during ageing results in increased production of nitric oxide (NO) and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.
The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P < 0.02) in the activities of chymotrypsin-like, trypsin-like, and post-acidic (post-glutamase) proteasome sites in RAW 264.7 cells at a dose of only 20 μM. These compounds also inhibited the production of NO by RAW-264.7 cells stimulated with LPS alone (>40%; P < 0.05), or LPS + interferon-γ (IFN-γ; >60%; P < 0.02). Furthermore, resveratrol, pterostilbene, morin hydrate, and quercetin suppressed secretion of TNF-α (>40%; P < 0.05) in LPS-stimulated RAW 264.7 cells, and suppressed NF-κB activation (22% to 45%; P < 0.05) in LPS-stimulated HEK293T cells. These compounds also significantly suppressed LPS-induced expression of TNF-α, IL-1β, IL-6, and iNOS genes in RAW 264.7 cells, and also in thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.
The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli. This is the first report demonstrating that resveratrol and pterostilbene act as proteasome inhibitors, thus providing a mechanism for their anti-inflammatory effects.
PMCID: PMC3393619  PMID: 22698256
Nitric oxide (NO); TNF-α; NF-κB; Cytokines; Resveratrol; Proteasome inhibitors
7.  LPS-Induced Formation of Immunoproteasomes: TNF-α and Nitric Oxide Production are Regulated by Altered Composition of Proteasome-Active Sites 
Cell biochemistry and biophysics  2011;60(1-2):77-88.
Stimulation of mouse macrophages with LPS leads to tumor necrosis factor (TNF-α) secretion and nitric oxide (NO) release at different times through independent signaling pathways. While the precise regulatory mechanisms responsible for these distinct phenotypic responses have not been fully delineated, results of our recent studies strongly implicate the cellular cytoplasmic ubiquitin–proteasome pathway as a key regulator of LPS-induced macrophage inflammatory responses. Our objective in this study was to define the relative contribution of specific proteasomal active-sites in induction of TNF-α and NO after LPS treatment of RAW 264.7 macrophages using selective inhibitors of these active sites. Our data provide evidence that LPS stimulation of mouse macrophages triggers a selective increase in the levels of gene and protein expression of the immunoproteasomes, resulting in a modulation of specific functional activities of the proteasome and a corresponding increase in NO production as compared to untreated controls. These findings suggest the LPS-dependent induction of immunoproteasome. In contrast, we also demonstrate that TNF-α expression is primarily dependent on both the chymotrypsin- and the trypsin-like activities of X, Y, Z subunits of the proteasome. Proteasome-associated post-acidic activity alone also contributes to LPS-induced expression of TNF-α. Taken together; our results indicate that LPS-induced TNF-α in macrophages is differentially regulated by each of the three proteasome activities. Since addition of proteasome inhibitors to mouse macrophages profoundly affects the degradation of proteins involved in signal transduction, we conclude that proteasome-specific degradation of several signaling proteins is likely involved in differential regulation of LPS-dependent secretion of proinflammatory mediators.
PMCID: PMC3119080  PMID: 21455682
Inflammation; Endotoxic shock; Cytokines; Nitric oxide
8.  The Immunoproteasomes Regulate Lps-Induced Trif/Tram Signaling Pathway in Murine Macrophages 
Cell biochemistry and biophysics  2011;60(1-2):119-126.
We have proposed the novel concept that the macrophage ubiquitin-proteasome (UP) pathway functions as a key regulator of LPS-induced inflammation signaling. Our findings suggest that proteasome-associated protease subunits X, Y, and Z, are replaced by LMP subunits after LPS treatment of RAW 264.7 cells. Our objective here was to determine the contribution of selective LMP proteasomal subunits to LPS-induced nitric oxide (NO) and TNF-α production in primary murine macrophages. Accordingly, thioglycollate-elicited macrophages from LMP7, LMP2, LMP10 (MECL-1), and LMP7/MECL-1 double knockout mice were stimulated in vitro with LPS, and were found to generate markedly reduced NO levels compared to wild-type (WT) mice, whereas TNF-α levels responses were essentially unaltered relative to wild-type responses. Our recent studies suggest that the TRIF/TRAM pathway is defective in LMP knockouts which may explain why iNOS/NO are not robustly induced in LPS-treated macrophages from knockouts. Treating these macrophages with IFN-γ and LPS, however, reverses this defect, leading to robust NO induction. TNF-α is induced by LPS in the LMP knockout macrophages because IκB and IRAK are degraded normally via the MyD88 pathway. Collectively, these findings strongly support the concept that LMP7/MECL-1 proteasomes subunits actively function to regulate LPS-induced NO production by affecting the TRIF/TRAM pathway.
PMCID: PMC3212439  PMID: 21455681
inflammation; endotoxic shock; macrophages; cytokines; nitric oxide
9.  Methamphetamine Increases LPS-Mediated Expression of IL-8, TNF-α and IL-1β in Human Macrophages through Common Signaling Pathways 
PLoS ONE  2012;7(3):e33822.
The use of methamphetamine (MA) has increased in recent years, and is a major health concern throughout the world. The use of MA has been associated with an increased risk of acquiring HIV-1, along with an increased probability of the acquisition of various sexually transmitted infections. In order to determine the potential effects of MA exposure in the context of an infectious agent, U937 macrophages were exposed to various combinations of MA and bacterial lipopolysaccharide (LPS). Treatment with MA alone caused significant increases in the levels of TNF-α, while treatment with both MA and LPS resulted in significant increases in TNF-α, IL-1β and the chemokine IL-8. The increases in cytokine or chemokine levels seen when cells were treated with both LPS and MA were generally greater than those increases observed when cells were treated with only LPS. Treatment with chemical inhibitors demonstrated that the signal transduction pathways including NF-kB, MAPK, and PI3-Akt were involved in mediating the increased inflammatory response. As discussed in the paper, these pathways appear to be utilized by both MA and LPS, in the induction of these inflammatory mediators. Since these pathways are involved in the induction of inflammation in response to other pathogens, this suggests that MA-exacerbated inflammation may be a common feature of infectious disease in MA abusers.
PMCID: PMC3315580  PMID: 22479453
10.  Inhibition of nitric oxide in LPS-stimulated macrophages of young and senescent mice by δ-tocotrienol and quercetin 
Changes in immune function believed to contribute to a variety of age-related diseases have been associated with increased production of nitric oxide (NO). We have recently reported that proteasome inhibitors (dexamethasone, mevinolin, quercetin, δ-tocotrienol, and riboflavin) can inhibit lipopolysaccharide (LPS)-induced NO production in vitro by RAW 264.7 cells and by thioglycolate-elicited peritoneal macrophages derived from four strains of mice (C57BL/6, BALB/c, LMP7/MECL-1-/- and PPAR-α-/- knockout mice). The present study was carried out in order to further explore the potential effects of diet supplementation with naturally-occurring inhibitors (δ-tocotrienol and quercetin) on LPS-stimulated production of NO, TNF-α, and other pro-inflammatory cytokines involved in the ageing process. Young (4-week-old) and senescent mice (42-week old) were fed control diet with or without quercetin (100 ppm), δ-tocotrienol (100 ppm), or dexamethasone (10 ppm; included as positive control for suppression of inflammation) for 4 weeks. At the end of feeding period, thioglycolate-elicited peritoneal macrophages were collected, stimulated with LPS, LPS plus interferon-β (IFN-β), or LPS plus interferon-γ (IFN-γ), and inflammatory responses assessed as measured by production of NO and TNF-α, mRNA reduction for TNF-α, and iNOS genes, and microarray analysis.
Thioglycolate-elicited peritoneal macrophages prepared after four weeks of feeding, and then challenged with LPS (10 ng or 100 ng) resulted in increases of 55% and 73%, respectively in the production of NO of 46-week-old compared to 8-week-old mice fed control diet alone (respective control groups), without affecting the secretion of TNF-α among these two groups. However, macrophages obtained after feeding with quercetin, δ-tocotrienol, and dexamethasone significantly inhibited (30% to 60%; P < 0.02) the LPS-stimulated NO production, compared to respective control groups. There was a 2-fold increase in the production of NO, when LPS-stimulated macrophages of quercetin, δ-tocotrienol, or dexamethasone were also treated with IFN-β or IFN-γ compared to respective control groups. We also demonstrated that NO levels and iNOS mRNA expression levels were significantly higher in LPS-stimulated macrophages from senescent (0.69 vs 0.41; P < 0.05), compared to young mice. In contrast, age did not appear to impact levels of TNF-α protein or mRNA expression levels (0.38 vs 0.35) in LPS-stimulated macrophages. The histological analyses of livers of control groups showed lesions of peliosis and microvesicular steatosis, and treated groups showed Councilman body, and small or large lymphoplasmacytic clusters.
The present results demonstrated that quercetin and δ-tocotrienols inhibit the LPS-induced NO production in vivo. The microarray DNA analyses, followed by pathway analyses indicated that quercetin or δ-tocotrienol inhibit several LPS-induced expression of several ageing and pro-inflammatory genes (IL-1β, IL-1α, IL-6, TNF-α, IL-12, iNOS, VCAM1, ICAM1, COX2, IL-1RA, TRAF1 and CD40). The NF-κB pathway regulates the production of NO and inhibits the pro-inflammatory cytokines involved in normal and ageing process. These ex vivo results confirmed the earlier in vitro findings. The present findings of inhibition of NO production by quercetin and δ-tocotrienol may be of clinical significance treating several inflammatory diseases, including ageing process.
PMCID: PMC3267680  PMID: 22185406
11.  Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models 
Inflammation has been implicated in a variety of diseases associated with ageing, including cancer, cardiovascular, and neurologic diseases. We have recently established that the proteasome is a pivotal regulator of inflammation, which modulates the induction of inflammatory mediators such as TNF-α, IL-1, IL-6, and nitric oxide (NO) in response to a variety of stimuli. The present study was undertaken to identify non-toxic proteasome inhibitors with the expectation that these compounds could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing ageing related diseases. We evaluated the capacity of various proteasome inhibitors to suppress TNF-α, NO and gene suppression of TNF-α, and iNOS mRNA, by LPS-stimulated macrophages from several sources. Further, we evaluated the mechanisms by which these agents suppress secretion of TNF-α, and NO production. Over the course of these studies, we measured the effects of various proteasome inhibitors on the RAW 264.7 cells, and peritoneal macrophages from four different strains of mice (C57BL/6, BALB/c, proteasome double subunits knockout LMP7/MECL-1-/-, and peroxisome proliferator-activated receptor-α,-/- (PPAR-α,-/-) knockout mice. We also directly measured the effect of these proteasome inhibitors on proteolytic activity of 20S rabbit muscle proteasomes.
There was significant reduction of chymotrypsin-like activity of the 20S rabbit muscle proteasomes with dexamethasone (31%), mevinolin (19%), δ-tocotrienol (28%), riboflavin (34%), and quercetin (45%; P < 0.05). Moreover, quercetin, riboflavin, and δ-tocotrienol also inhibited chymotrypsin-like, trypsin-like and post-glutamase activities in RAW 264.7 whole cells. These compounds also inhibited LPS-stimulated NO production and TNF-α, secretion, blocked the degradation of P-IκB protein, and decreased activation of NF-κB, in RAW 264.7 cells. All proteasome inhibitors tested also significantly inhibited NO production (30% to 60% reduction) by LPS-induced thioglycolate-elicited peritoneal macrophages derived from all four strains of mice. All five compounds also suppressed LPS-induced TNF-α, secretion by macrophages from C57BL/6 and BALB/c mice. TNF-α, secretion, however, was not suppressed by any of the three proteasome inhibitors tested (δ-tocotrienol, riboflavin, and quercetin) with LPS-induced macrophages from LMP7/MECL-1-/- and PPAR-α,-/- knockout mice. Results of gene expression studies for TNF-α, and iNOS were generally consistent with results obtained for TNF-α, protein and NO production observed with four strains of mice.
Results of the current study demonstrate that δ-tocotrienol, riboflavin, and quercetin inhibit NO production by LPS-stimulated macrophages of all four strains of mice, and TNF-α, secretion only by LPS-stimulated macrophages of C57BL/6 and BALB/c mice. The mechanism for this inhibition appears to be decreased proteolytic degradation of P-IκB protein by the inhibited proteasome, resulting in decreased translocation of activated NF-κB to the nucleus, and depressed transcription of gene expression of TNF-α, and iNOS. Further, these naturally-occurring proteasome inhibitors tested appear to be relatively potent inhibitors of multiple proteasome subunits in inflammatory proteasomes. Consequently, these agents could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing a variety of ageing related diseases.
PMCID: PMC3206449  PMID: 21992595
Shock (Augusta, Ga.)  2010;34(4):390-401.
Our previous work has provided strong evidence that the proteasome is central to the vast majority of genes induced in mouse macrophages in response to lipopolysaccharide (LPS) stimulation. In the studies presented here, we evaluated the role of the macrophage proteasome in response to a second microbial product CpG DNA (unmethylated bacterial DNA). For these studies, we applied Affymetrix microarray analysis of RNA derived from murine macrophages stimulated with CpG DNA in the presence or absence of proteasome inhibitor, lactacystin. The results of these studies revealed that similar to LPS, a vast majority of those macrophage genes regulated by CpG DNA are also under the control of the proteasome at 4 h. In contrast to LPS stimulation, however, many of these genes were induced much later than 4 h, at 18 h, in response to CpG DNA. Lactacystin treatment of macrophages completely blocked the CpG DNA-induced gene expression of TNF-α and other genes involved in production of inflammatory mediators. These data strongly support the conclusion that, similar to LPS, the macrophage proteasome is a key regulator of CpG DNA-induced signaling pathways.
PMCID: PMC2943147  PMID: 20160661
13.  Differential effects of lactacystin on cytokine production in activated Jurkat cells and murine splenocytes 
Cytokine  2010;51(1):12-17.
Previous studies have demonstrated that the proteasome inhibitor, lactacystin, suppresses cytokine production and induction of other inflammatory mediators by LPS-stimulated macrophages. The purpose of the present studies was to determine the effect of lactacystin upon the function of activated human Jurkat T cells and murine splenocytes. Lactacystin treatment suppressed interleukin (IL)-2, interferon (IFN)γ, and IL-13 production similarly in both activated Jurkat cells and primary splenocytes. Interestingly, lactacystin produced differential effects on IL-4 transcription in the two models. While lactacystin inhibited IL-4 mRNA transcription in primary splenocytes, it induced IL-4 mRNA in a concentration-dependent manner in Jurkat cells. The increase in IL-4 mRNA levels by lactacystin did not correlate with increases in TH2-specific transcription factors, avian musculoaponeurotic fibrosarcoma AS42 oncogene homolog (c-maf) or GATA binding protein 3 (GATA-3). In addition, the binding of both GATA-3 and t-bet to their respective response elements was essentially unchanged by lactacystin treatment in both splenocytes and Jurkat T cells, suggesting the induction of IL-4 is due to other mechanisms. Collectively, the current studies suggest proteasomal activity has differential effects on IL-4 transcription in activated Jurkat cells and primary splenocytes.
PMCID: PMC2911229  PMID: 20427199
Jurkat; proteasome; splenocyte; T cell; IL-2; IL-4; IFNγ; IL-13
14.  Tocotrienols-induced inhibition of platelet thrombus formation and platelet aggregation in stenosed canine coronary arteries 
Dietary supplementation with tocotrienols has been shown to decrease the risk of coronary artery disease. Tocotrienols are plant-derived forms of vitamin E, which have potent anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and neuroprotective properties. Our objective in this study was to determine the extent to which tocotrienols inhibit platelet aggregation and reduce coronary thrombosis, a major risk factor for stroke in humans. The present study was carried out to determine the comparative effects of α-tocopherol, α-tocotrienol, or tocotrienol rich fraction (TRF; a mixture of α- + γ- + δ-tocotrienols) on in vivo platelet thrombosis and ex vivo platelet aggregation (PA) after intravenous injection in anesthetized dogs, by using a mechanically stenosed circumflex coronary artery model (Folts' cyclic flow model).
Collagen-induced platelet aggregation (PA) in platelet rich plasma (PRP) was decreased markedly after treatment with α-tocotrienol (59%; P < 0.001) and TRF (92%; P < 0.001). α-Tocopherol treatment was less effective, producing only a 22% (P < 0.05) decrease in PA. Adenosine diphosphate-induced (ADP) PA was also decreased after treatment with α-tocotrienol (34%; P < 0.05) and TRF (42%; P < 0.025). These results also indicate that intravenously administered tocotrienols were significantly better than tocopherols in inhibiting cyclic flow reductions (CFRs), a measure of the acute platelet-mediated thrombus formation. Tocotrienols (TRF) given intravenously (10 mg/kg), abolished CFRs after a mean of 68 min (range 22 -130 min), and this abolition of CFRs was sustained throughout the monitoring period (50 - 160 min).
Next, pharmacokinetic studies were carried out and tocol levels in canine plasma and platelets were measured. As expected, α-Tocopherol treatment increased levels of total tocopherols in post- vs pre-treatment specimens (57 vs 18 μg/mL in plasma, and 42 vs 10 μg/mL in platelets). However, treatment with α-tocopherol resulted in slightly decreased levels of tocotrienols in post- vs pre-treatment samples (1.4 vs 2.9 μg/mL in plasma and 2.3 vs 2.8 μg/mL in platelets). α-Tocotrienol treatment increased levels of both tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 45 vs 10 μg/mL in plasma and 28 vs 5 μg/mL in platelets; tocotrienols, 2.8 vs 0.9 μg/mL in plasma and 1.28 vs 1.02 μg/mL in platelets). Treatment with tocotrienols (TRF) also increased levels of tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 68 vs 20 μg/mL in plasma and 31.4 vs 7.9 μg/mL in platelets; tocotrienols, 8.6 vs 1.7 μg/mL in plasma and 3.8 vs 3.9 μg/mL in platelets).
The present results indicate that intravenously administered tocotrienols inhibited acute platelet-mediated thrombus formation, and collagen and ADP-induced platelet aggregation. α-Tocotrienols treatment induced increases in α-tocopherol levels of 4-fold and 6-fold in plasma and platelets, respectively. Interestingly, tocotrienols (TRF) treatment induced a less pronounced increase in the levels of tocotrienols in plasma and platelets, suggesting that intravenously administered tocotrienols may be converted to tocopherols. Tocotrienols, given intravenously, could potentially prevent pathological platelet thrombus formation and thus provide a therapeutic benefit in conditions such as stroke and myocardial infarction.
PMCID: PMC3096575  PMID: 21489303
15.  δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens 
Chronic, low-grade inflammation provides a link between normal ageing and the pathogenesis of age-related diseases. A series of in vitro tests confirmed the strong anti-inflammatory activities of known inhibitors of NF-κB activation (δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone). δ-Tocotrienol also suppresses β-hydroxy-β-methylglutaryl coenzyme A (HMG-CoA) reductase activity (the rate-limiting step in de novo cholesterol synthesis), and concomitantly lowers serum total and LDL cholesterol levels. We evaluated these compounds in an avian model anticipating that a dietary additive combining δ-tocotrienol with quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone would yield greater reductions in serum levels of total cholesterol, LDL-cholesterol and inflammatory markers (tumor necrosis factor-α [TNF-α], and nitric oxide [NO]), than that attained with the individual compounds.
The present results showed that supplementation of control diets with all compounds tested except riboflavin, (-) Corey lactone, and dexamethasone produced small but significant reductions in body weight gains as compared to control. (-) Corey lactone and riboflavin did not significantly impact body weight gains. Dexamethasone significantly and markedly reduced weight gain (>75%) compared to control. The serum levels of TNF-α and NO were decreased 61% - 84% (P < 0.001), and 14% - 67%, respectively, in chickens fed diets supplemented with δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone as compared to controls. Significant decreases in the levels of serum total and LDL-cholesterol were attained with δ-tocotrienol, quercetin, riboflavin and (-) Corey lactone (13% - 57%; P < 0.05), whereas, these levels were 2-fold higher in dexamethasone treated chickens as compared to controls. Parallel responses on hepatic lipid infiltration were confirmed by histological analyses. Treatments combining δ-tocotrienol with the other compounds yielded values that were lower than individual values attained with either δ-tocotrienol or the second compound. Exceptions were the significantly lower total and LDL cholesterol and triglyceride values attained with the δ-tocotrienol/(-) Corey lactone treatment and the significantly lower triglyceride value attained with the δ-tocotrienol/riboflavin treatment. δ-Tocotrienol attenuated the lipid-elevating impact of dexamethasone and potentiated the triglyceride lowering impact of riboflavin. Microarray analyses of liver samples identified 62 genes whose expressions were either up-regulated or down-regulated by all compounds suggesting common impact on serum TNF-α and NO levels. The microarray analyses further identified 41 genes whose expression was differentially impacted by the compounds shown to lower serum lipid levels and dexamethasone, associated with markedly elevated serum lipids.
This is the first report describing the anti-inflammatory effects of δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone on serum TNF-δ and NO levels. Serum TNF-δ levels were decreased by >60% by each of the experimental compounds. Additionally, all the treatments except with dexamethasone, resulted in lower serum total cholesterol, LDL-cholesterol and triglyceride levels. The impact of above mentioned compounds on the factors evaluated herein was increased when combined with δ-tocotrienol.
PMCID: PMC3053241  PMID: 21356098
16.  Tocotrienols inhibit lipopolysaccharide-induced pro-inflammatory cytokines in macrophages of female mice 
Inflammation has been implicated in cardiovascular disease, and the important role of proteasomes in the development of inflammation and other macrophage functions has been demonstrated. Tocotrienols are potent hypocholesterolemic agents that inhibit β-hydroxy-β-methylglutaryl coenzyme A reductase activity, which is degraded via the ubiquitin-proteasome pathway. Our objective was to evaluate the effect of tocotrienols in reducing inflammation. Lipopolysaccharide (LPS) was used as a prototype for inflammation in murine RAW 264.7 cells and BALB/c female mice.
The present results clearly demonstrate that α-, γ-, or δ-tocotrienol treatments inhibit the chymotrypsin-like activity of 20 S rabbit muscle proteasomes (> 50%; P < 0.05). Chymotrypsin, trypsin, and post-glutamase activities were decreased > 40% (P < 0.05) with low concentrations (< 80 μM), and then increased gradually with concentrations of (80 - 640 μM) in RAW 264.7 whole cells. Tocotrienols showed 9 - 33% (P < 0.05) inhibitions in TNF-α secretion in LPS-stimulated RAW 264.7 cells. Results of experiments carried out in BALB/c mice demonstrated that serum levels of TNF-α after LPS treatment were also reduced (20 - 48%; P < 0.05) by tocotrienols with doses of 1 and 10 μg/kg, and a corresponding rise in serum levels of corticosterone (19 - 41%; P < 0.05) and adrenocorticotropic hormone (81 - 145%; P < 0.02) was observed at higher concentrations (40 μM). Maximal inhibition of LPS-induced TNF-α was obtained with δ-tocotrienol (10 μg/kg). Low concentrations of δ-Tocotrienols (< 20 μM) blocked LPS-induced gene expression of TNF-α, IL-1β, IL-6 and iNOS (> 40%), while higher concentrations (40 μM) increased gene expression of the latter in peritoneal macrophages (prepared from BALB/c mice) as compared to control group.
These results represent a novel approach by using natural products, such as tocotrienols as proteasome modulators, which may lead to the development of new dietary supplements of tocotrienols for cardiovascular diseases, as well as others that are based on inflammation.
PMCID: PMC3016328  PMID: 21162750
17.  A Toll-Like Receptor-Responsive Kinase, Protein Kinase R, Is Inactivated in Endotoxin Tolerance through Differential K63/K48 Ubiquitination 
mBio  2010;1(5):e00239-10.
Overwhelming inflammation triggered by systemic infection in bacterial sepsis contributes to the pathology of this condition. Toll-like receptors (TLRs) are important in early septic inflammation. As a safeguard, the innate immune system has evolved to counter excessive inflammation through the induction of “tolerance.” In endotoxin tolerance, TLR signaling is inhibited and/or attenuated by multiple mechanisms that mitigate the ability of lipopolysaccharide (LPS) to activate critical kinases through TLR4. Here, we describe a novel mechanism. Protein kinase R (PKR), a kinase normally activated by a subset of TLRs, is rendered unresponsive to LPS in endotoxin-tolerized cells. In its naive state, PKR is subject to K63-linked ubiquitination (Ub), followed by K48-linked Ub, in response to LPS. In tolerance, the kinetics of this differential Ub is altered, resulting in a predominance of K48-linked chains, concomitant with a loss of PKR activation. These findings provide a novel mechanism by which a TLR-responsive kinase may be rendered inactive in tolerance.
“Endotoxin tolerance” is a period of transient unresponsiveness to the lipopolysaccharide (LPS) outer membrane component of Gram-negative bacteria that is induced by prior exposure to LPS through Toll-like receptor 4 (TLR4). The loss of LPS-inducible cytokine production by macrophages from patients who have experienced Gram-negative sepsis is well documented, and the increased susceptibility of such patients to reinfection has been attributed to the development of endotoxin tolerance. Multiple mechanisms have been proffered to account for this attenuated response. Using the LPS-responsive kinase protein kinase R (PKR), we have identified differential K48 versus K63 ubiquitination as an additional molecular mechanism by which signal-transducing elements may be inactivated in a state of endotoxin tolerance. This work is highly significant because it links recent discoveries concerning the important role of ubiquitination of signaling molecules in regulating TLR signaling with the loss of LPS responsiveness in tolerance.
PMCID: PMC2962435  PMID: 20978539
18.  Differential Activation of Human TLR4 by E. coli and S. flexneri 2a Lipopolysaccharide: Combined Effects of Lipid A Acylation State and TLR4 Polymorphisms on Signaling1 
The lipid A of LPS activates TLR45 through an interaction with MD-2 and the degree of lipid A acylation affects TLR4 responsiveness. Two TLR4 single nucleotide polymorphisms (SNPs) (Asp299Gly and Thr399Ile) have been associated with LPS-hyporesponsiveness. We hypothesized that the combination of hypoacylation and these SNPs would exhibit a compounded effect on TLR4 signaling. HEK293T transfectants expressing wild-type (WT) or polymorphic TLR4 were stimulated with E. coli (predominantly hexaacylated lipid A) or S. flexneri 2a (a mixture of hexaacylated, pentaacylated, and predominantly tetraacylated lipid A) LPS, or hexaacylated vs. pentaacylated synthetic lipid As. NF-κB-reporter activity was significantly lower in response to S. flexneri 2a than E. coli LPS, and further decreased in polymorphic transfectants. Neither hexaacylated nor pentaacylated synthetic lipid A induced NF-κB activity in WT transfectants under the identical transfection conditions used for LPS; however, increasing human MD-2 expression rescued responsiveness to hexaacylated lipid A only, while murine MD-2 was required to elicit a response to pentaacylated lipid A. Adherent PBMC of healthy volunteers were also compared for LPS-induced TNF-α, IL-6, IL-1β, and IL-10 production. Cytokine levels were significantly lower (~20–90%) in response to S. flexneri than to E. coli LPS/lipid A and PBMC from polymorphic individuals secreted decreased cytokine levels in response to both LPS types and failed to respond to pentaacylated lipid A. Thus, the combination of acylation state and host genetics may significantly impact vaccine immunogenicity and/or efficacy, whether LPS is an integral component of a whole organism vaccine or included as an adjuvant.
PMCID: PMC2739731  PMID: 18178854
TLR4; LPS; lipid A; SNPs; inflammation; human; cytokines; Shigella
19.  A combination of proteasome inhibitors and antibiotics prevents lethality in a septic shock model 
Innate immunity  2008;14(5):319-329.
Our recent studies with lactacystin, a prototype proteasome inhibitor, have suggested that the proteasome is a key regulator of LPS-induced signaling pathways contributing to the inflammatory process. Moreover, lactacystin protects animals from LPS-induced shock. Therefore, we sought to identify other less toxic compounds that would block the chymotrypsin-like activity of the proteasome or LPS-induced nitric oxide (NO). After screening over 100 natural compounds (based on chemistry and inhibition of LPS-induced biological activities), we now report for the first time that quercetin, like lactacystin (the prototype proteasome inhibitor), and mevinolin are also inhibitors of the chymotrypsin-like activity of the cellular proteasome within living cells. In addition, this study also suggests that mevinolin and quercetin both have relatively potent anti-inflammatory effects on LPS-treated macrophages in vitro. Interestingly, both of these compounds behave like lactacystin in that they block LPS-induced NO to a greater extent than TNF-α. The results of our experiments clearly suggest that mevinolin, in combination with the antibiotic imipenem, can provide protection against polymicrobial septic lethality induced by cecal-ligation and puncture in mice. Collectively, these studies strongly support the conclusion that therapeutic targeting of cellular proteasomes, in conjunction with standard antimicrobial therapy, may be of considerable survival benefit in the treatment of septic shock.
PMCID: PMC2666041  PMID: 18809656
Inflammation; endotoxic shock; macrophages; statins; Primaxin; cytokines; nitric oxide
20.  Endogenous and Exogenous Glucocorticoids in Experimental Enterococcal Infection 
Clinical and Vaccine Immunology  2006;13(3):349-355.
The potentially protective role of the host adrenal-glucocorticoid response to enterococcal infection was evaluated in an experimental model in which mice were infected intraperitoneally with two distinct Enterococcus faecalis strains (K9 and CP-1). We demonstrated that corticosterone levels in serum and peritoneal-lavage fluid were elevated within 1 hour of infection with either E. faecalis strain. We also demonstrated that adrenalectomized mice generated a more robust localized peritoneal tumor necrosis factor alpha (TNF-α) response to both E. faecalis strains than did sham-adrenalectomized mice but that neither E. faecalis strain induced a systemic TNF-α response. Further, peritoneal TNF-α production in adrenalectomized mice infected with either E. faecalis K9 or CP-1 was suppressed by prior treatment with an exogenous glucocorticoid (dexamethasone). The potential clinical significance of these results was suggested by our findings that adrenalectomy markedly increased susceptibility (a >100-fold decrease in the 50% lethal dose) to lethal infections with E. faecalis CP-1 and that prior dexamethasone treatment partially compensated for adrenalectomy. In marked contrast to these findings, however, adrenalectomy did not substantially increase susceptibility to lethal E. faecalis K9 infection. Further, preinfection with E. faecalis CP-1 1 hour before infection with E. faecalis K9 did not protect mice from lethal E. faecalis K9 infections. Collectively, these studies indicate that the host can generate a glucocorticoid response to E. faecalis infection that suppresses TNF-α production. Further, this glucocorticoid response can protect the host from potentially lethal E. faecalis infections, but different strains show heterogeneity with respect to the extent of protection afforded by the adrenal-glucocorticoid response.
PMCID: PMC1391968  PMID: 16522776
21.  Regulation of Cellular Caveolin-1 Protein Expression in Murine Macrophages by Microbial Products  
Infection and Immunity  2005;73(12):8136-8143.
Previously, we reported that expression of caveolin-1 in elicited peritoneal mouse macrophages was up-regulated by remarkably low (1.0-pg/ml) concentrations of Escherichia coli O111 lipopolysaccharide (LPS). Here we report that increases in caveolin-1 expression are manifested by different types of LPS, LPS-mimetic taxol, and heat-killed E. coli and to a much lesser extent by zymosan, polysaccharide-peptidoglycan, and heat-killed Staphylococcus aureus. Rhodobacter sphaeroides lipid A (RsDPLA) could not induce caveolin-1 expression in macrophages. Interestingly, polymyxin B (5 μg/ml) and RsDPLA show only a limited capacity to inhibit LPS-induced caveolin-1 expression. These findings suggest that expression of caveolin-1 in response to LPS may only partially be dependent upon lipid A. Recombinant tumor necrosis factor alpha marginally induces caveolin-1, suggesting that the ability of LPS to regulate caveolin-1 is not mediated primarily through an autocrine/paracrine mechanism involving this cytokine. Under conditions in which cellular levels of caveolin-1 are profoundly induced, no significant changes in TLR4 expression are observed. Of interest, caveolin-1 appears to localize to two cellular compartments, one associated with lipid rafts and a second associated with TLR4. Gamma interferon treatment inhibits the induction of caveolin-1 by LPS in macrophages. Inhibition of the p38 kinase-dependent pathway, but not the extracellular signal-regulated kinase pathway, effectively reduced the ability of LPS to mediate caveolin-1 up-regulation. Lactacystin, a potent inhibitor of the proteasome pathway, significantly modulates LPS-independent caveolin-1 expression, and lactacystin inhibits LPS-triggered caveolin-1 responses. These studies suggest that caveolin-1 up-regulation in response to LPS is likely to be proteasome dependent and triggered through the p38 kinase pathway.
PMCID: PMC1307083  PMID: 16299308
22.  Role of Toll-Like Receptor 4 in Induction of Cell-Mediated Immunity and Resistance to Brucella abortus Infection in Mice  
Infection and Immunity  2004;72(1):176-186.
Initial host defense to bacterial infection is executed by innate immunity, and therefore the main goal of this study was to examine the contribution of Toll-like receptors (TLRs) during Brucella abortus infection. CHO reporter cell lines transfected with CD14 and TLRs showed that B. abortus triggers both TLR2 and TLR4. In contrast, lipopolysaccharide (LPS) and lipid A derived from Brucella rough (R) and smooth (S) strains activate CHO cells only through TLR4. Consistently, macrophages from C3H/HePas mice exposed to R and S strains and their LPS produced higher levels of tumor necrosis factor alpha (TNF-α) and interleukin-12 compared to C3H/HeJ, a TLR4 mutant mouse. The essential role of TLR4 for induction of proinflammatory cytokines was confirmed with diphosphoryl lipid A from Rhodobacter sphaeroides. Furthermore, to determine the contribution of TLR2 and TLR4 in bacterial clearance, numbers of Brucella were monitored in the spleen of C3H/HeJ, C3H/HePas, TLR2 knockout, and wild-type mice at 1, 3, and 6 weeks following B. abortus infection. Interestingly, murine brucellosis was markedly exacerbated at weeks 3 and 6 after infection in animals that lacked functional TLR4 (C3H/HeJ) compared to C3H/HePas that paralleled the reduced gamma interferon production by this mouse strain. Finally, by mass spectrometry analysis we found dramatic differences on the lipid A profiles of R and S strains. In fact, S lipid A was shown to be more active to trigger TLR4 than R lipid A in CHO cells and more effective in inducing dendritic cell maturation. In conclusion, these results indicate that TLR4 plays a role in resistance to B. abortus infection and that S lipid A has potent adjuvant activity.
PMCID: PMC344000  PMID: 14688095
23.  Rough Lipopolysaccharide from Brucella abortus and Escherichia coli Differentially Activates the Same Mitogen-Activated Protein Kinase Signaling Pathways for Tumor Necrosis Factor Alpha in RAW 264.7 Macrophage-Like Cells  
Infection and Immunity  2002;70(12):7165-7168.
The intracellular, gram-negative pathogen Brucella abortus establishes chronic infections in host macrophages while downregulating cytokines such as tumor necrosis factor alpha (TNF-α). When producing TNF-α, Brucella abortus rough lipopolysaccharide (LPS) activates the same mitogen-activated protein kinase signaling pathways (ERK and JNK) as Escherichia coli LPS, but Brucella LPS is a much less potent agonist.
PMCID: PMC132973  PMID: 12438403
24.  Signaling by Toll-Like Receptor 2 and 4 Agonists Results in Differential Gene Expression in Murine Macrophages 
Infection and Immunity  2001;69(3):1477-1482.
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been reported to differ structurally and functionally from enterobacterial LPS. These studies demonstrate that in contrast to protein-free enterobacterial LPS, a similarly purified preparation of P. gingivalis LPS exhibited potent Toll-like receptor 2 (TLR2), rather than TLR4, agonist activity to elicit gene expression and cytokine secretion in murine macrophages and transfectants. More importantly, TLR2 stimulation by this P. gingivalis LPS preparation resulted in differential expression of a panel of genes that are normally induced in murine macrophages by Escherichia coli LPS. These data suggest that (i) P. gingivalis LPS does not signal through TLR4 and (ii) signaling through TLR2 and through TLR4 differs quantitatively and qualitatively. Our data support the hypothesis that the shared signaling pathways elicited by TLR2 and by TLR4 agonists must diverge in order to account for the distinct patterns of inflammatory gene expression.
PMCID: PMC98044  PMID: 11179315
25.  Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide 
Journal of Clinical Investigation  2000;105(4):497-504.
Lipopolysaccharide (LPS) is the main inducer of shock and death in Gram-negative sepsis. Recent evidence suggests that LPS-induced signal transduction begins with CD14-mediated activation of 1 or more Toll-like receptors (TLRs). The lipid A analogues lipid IVa and Rhodobacter sphaeroides lipid A (RSLA) exhibit an uncommon species-specific pharmacology. Both compounds inhibit the effects of LPS in human cells but display LPS-mimetic activity in hamster cells. We transfected human TLR4 or human TLR2 into hamster fibroblasts to determine if either of these LPS signal transducers is responsible for the species-specific pharmacology. RSLA and lipid IVa strongly induced NF-κB activity and IL-6 release in Chinese hamster ovary fibroblasts expressing CD14 (CHO/CD14), but these compounds antagonized LPS antagonists in CHO/CD14 fibroblasts that overexpressed human TLR4. No such antagonism occurred in cells overexpressing human TLR2. We cloned TLR4 from hamster macrophages and found that human THP-1 cells expressing the hamster TLR4 responded to lipid IVa as an LPS mimetic, as if they were hamster in origin. Hence, cells heterologously overexpressing TLR4 from different species acquired a pharmacological phenotype with respect to recognition of lipid A substructures that corresponded to the species from which the TLR4 transgene originated. These data suggest that TLR4 is the central lipid A–recognition protein in the LPS receptor complex.
PMCID: PMC289161  PMID: 10683379

Results 1-25 (26)