PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  The Neural Correlates of Anomalous Habituation to Negative Emotional Pictures in Borderline and Avoidant Personality Disorder Patients 
Objective
Extreme emotional reactivity is a defining feature of borderline personality disorder, yet the neural-behavioral mechanisms underlying this affective instability are poorly understood. One possible contributor would be diminished ability to engage the mechanism of emotional habituation. We tested this hypothesis by examining behavioral and neural correlates of habituation in borderline patients, healthy controls, and a psychopathological control group of avoidant personality disorder patients.
Method
During fMRI scan acquisition, borderline patients, healthy controls and avoidant personality disorder patients viewed novel and repeated pictures, providing valence ratings at each presentation. Statistical parametric maps of the contrasts of activation during repeat versus novel negative picture viewing were compared between groups. Psychophysiological interaction analysis was employed to examine functional connectivity differences between groups.
Results
Unlike healthy controls, neither borderline nor avoidant personality disorder participants showed increased activity in dorsal anterior cingulate cortex when viewing repeat versus novel pictures. This failure to increase dorsal anterior cingulate activity was associated with greater affective instability in borderline participants. In addition, borderline and avoidant participants showed smaller insula-amygdala connectivity increases than healthy participants and did not show habituation in ratings of the emotional intensity of the images as did healthy participants. Borderline patients differed from avoidant patients in insula-ventral anterior cingulate connectivity during habituation.
Conclusions
Borderline patients fail to habituate to negative pictures as do healthy participants and differ from both healthy controls and avoidant patients in neural activity during habituation. A failure to effectively engage emotional habituation processes may contribute to affective instability in borderline patients.
doi:10.1176/appi.ajp.2013.13070852
PMCID: PMC3947284  PMID: 24275960
borderline personality disorder; avoidant personality disorder; affective instability; fMRI; functional connectivity
2.  Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder 
Objective
Siever and Davis’ (1991) psychobiological framework of borderline personality disorder (BPD) identifies affective instability (AI) as a core dimension characterized by prolonged and intense emotional reactivity. Recently, deficient amygdala habituation, defined as a change in response to repeated relative to novel unpleasant pictures within a session, has emerged as a biological correlate of AI in BPD. Dialectical behavior therapy (DBT), an evidence-based treatment, targets AI by teaching emotion-regulation skills. This study tested the hypothesis that BPD patients would exhibit decreased amygdala activation and improved habituation, as well as improved emotion regulation with standard 12-month DBT.
Methods
Event-related fMRI was obtained pre- and post-12-months of standard-DBT in unmedicated BPD patients. Healthy controls (HCs) were studied as a benchmark for normal amygdala activity and change over time (n = 11 per diagnostic-group). During each scan, participants viewed an intermixed series of unpleasant, neutral and pleasant pictures presented twice (novel, repeat). Change in emotion regulation was measured with the Difficulty in Emotion Regulation (DERS) scale.
Results
fMRI results showed the predicted Group × Time interaction: compared with HCs, BPD patients exhibited decreased amygdala activation with treatment. This post-treatment amygdala reduction in BPD was observed for all three pictures types, but particularly marked in the left hemisphere and during repeated-emotional pictures. Emotion regulation measured with the DERS significantly improved with DBT in BPD patients. Improved amygdala habituation to repeated-unpleasant pictures in patients was associated with improved overall emotional regulation measured by the DERS (total score and emotion regulation strategy use subscale).
Conclusion
These findings have promising treatment implications and support the notion that DBT targets amygdala hyperactivity—part of the disturbed neural circuitry underlying emotional dysregulation in BPD. Future work includes examining how DBT-induced amygdala changes interact with frontal-lobe regions implicated in emotion regulation.
doi:10.1016/j.jpsychires.2014.06.020
PMCID: PMC4263347  PMID: 25038629
Borderline personality disorder; Emotion regulation; Amygdala; Habituation; fMRI
5.  Neural Correlates of Emotion Processing in Borderline Personality Disorder 
Psychiatry research  2009;172(3):192-199.
Emotional instability is a hallmark feature of borderline personality disorder (BPD), yet its biological underpinnings are poorly understood. We employed functional MRI to compare patterns of regional brain activation in BPD patients and healthy volunteers as they process positive and negative social emotional stimuli. fMRI images were acquired while 19 BPD patients and 17 healthy controls (HC) viewed emotion-inducing pictures from the IAPS set. Activation data were analyzed with SPM5 ANCOVA models to derive the effects of diagnosis and stimulus type. BPD patients demonstrated greater differences in activation than controls, when viewing negative pictures compared to rest, in the amygdala, fusiform gyrus, primary visual areas, superior temporal gyrus (STG), and premotor areas, while healthy controls showed greater differences than BPD’s in the insula, middle temporal gyrus and dorsolateral prefrontal cortex (BA46). When viewing positive pictures compared to rest, BPD patients showed greater differences in the STG, premotor cortex, and ventrolateral prefrontal cortex. These findings suggest that BPD patients show greater amygdala activity and heightened activity of visual processing regions than HC’s, when processing negative social emotional pictures compared to rest. They activate neural networks in emotion processing that are phylogenetically older and more reflexive than healthy controls.
doi:10.1016/j.pscychresns.2008.07.010
PMCID: PMC4153735  PMID: 19394205
Affective Instability; Emotion; fMRI; Social-Emotional Cues; Borderline Personality Disorder
6.  Platelet protein kinase C and brain-derived neurotrophic factor levels in borderline personality disorder patients 
Psychiatry research  2012;199(2):92-97.
Borderline personality disorder (BPD) is a prevalent and difficult to treat psychiatric condition characterized by abrupt mood swings, intense anger and depression, unstable interpersonal relationships, impulsive self-destructive behavior and a suicide rate of approximately 10%. Possible underlying molecular dysregulations in BPD have not been well explored. Protein kinase C (PKC) and brain-derived neurotrophic factor (BDNF) have both been implicated in affective disorders, but their role in BPD has not been examined. Platelets were isolated from blood obtained from 24 medication-free BPD patients and 18 healthy control subjects. PKC-α, phosphorylated-PKC-α (p-PKCα), PKC-β II, and BDNF were measured in platelet homogenates by immunoblotting. In the males, platelet BDNF and PKC-α levels were lower in patients than controls. p-PKC-α and PKC-βII were lower at trend levels. In the entire sample, platelet p-PKC α and PKC-α activity were lower, at a trend level, in patients compared to controls. This is the first report to our knowledge of PKC and BDNF activity in BPD and calls for replication. These findings are consistent with altered PKC and BDNF activity in a range of neuropsychiatric conditions including bipolar disorder, depression and suicide.
doi:10.1016/j.psychres.2012.04.026
PMCID: PMC4128317  PMID: 22633012
PKC; BDNF; Neurotrophic Factors; Second Messengers; Personality Disorders; Borderline Personality Disorder
7.  Developmental Differences in Diffusion-Tensor Imaging Parameters in Borderline Personality Disorder 
Journal of psychiatric research  2013;47(8):1101-1109.
Background
Borderline personality disorder (BPD) often presents during adolescence. Early detection and intervention decreases its subsequent severity. However, little is known about early predictors and biological underpinnings of BPD. The observed abnormal functional connectivity among brain regions in BPD led to studies of white matter, as the neural substrate of connectivity. However, diffusion tensor imaging (DTI) studies in adult BPD have been inconclusive, and, as yet, there are no published DTI studies in borderline adolescents.
Methods
We conducted DTI tractography in 38 BPD patients (14-adolescents,24-adults) and 32 healthy controls (13-adolescents,19-adults).
Results
We found bilateral tract-specific decreased fractional anisotropy (FA) in inferior longitudinal fasciculus (ILF) in BPD adolescents compared to adolescent controls. ILF FA was significantly higher in adolescent controls compared to BPD adolescents, BPD adults and adult controls (WilksF(3,57)=3.55, p<0.02). Follow-up voxelwise TBSS analysis demonstrated lower FA in BPD adolescents compared to adolescent controls also in uncinate and occipitofrontal fasciculi.
Discussion
FA generally develops along an inverted U-shape curve, increasing through adolescence, and slowly decreasing in adulthood. Our findings suggest that, in adolescent BPD, this normal developmental “peak” in FA, which is seen in healthy controls, is not achieved. This suggests a possible neural substrate for the previously reported OFC-amygdala disconnect in adults with BPD. It raises the possibility that a white matter tract abnormality in BPD present in adolescence may not be appreciable in adulthood, but a functional abnormality in the coordination among brain regions persists. Our finding represents a possible biological marker to identify those at risk for developing BPD.
doi:10.1016/j.jpsychires.2013.03.021
PMCID: PMC3725738  PMID: 23628384
8.  Anterior limb of the internal capsule in schizotypal personality disorder: Fiber-tract counting, volume, and anisotropy 
Schizophrenia research  2012;141(0):119-127.
Mounting evidence suggests that white matter abnormalities and altered subcortical–cortical connectivity may be central to the pathology of schizophrenia (SZ). The anterior limb of the internal capsule (ALIC) is an important thalamo-frontal white-matter tract shown to have volume reductions in SZ and to a lesser degree in schizotypal personality disorder (SPD). While fractional anisotropy (FA) and connectivity abnormalities in the ALIC have been reported in SZ, they have not been examined in SPD. In the current study, magnetic resonance (MRI) and diffusion tensor imaging (DTI) were obtained in age- and sex-matched individuals with SPD (n=33) and healthy controls (HCs; n=38). The ALIC was traced bilaterally on five equally spaced dorsal-to-ventral axial slices from each participant’s MRI scan and co-registered to DTI for the calculation of FA. Tractography was used to examine tracts between the ALIC and two key Brodmann areas (BAs; BA10, BA45) within the dorsolateral prefrontal cortex (DLPFC). Compared with HCs, the SPD participants exhibited (a) smaller relative volume at the mid-ventral ALIC slice level but not the other levels; (b) normal FA within the ALIC; (c) fewer relative number of tracts between the most-dorsal ALIC levels and BA10 but not BA45 and (d) fewer dorsal ALIC–DLPFC tracts were associated with greater symptom severity in SPD. In contrast to prior SZ studies that report lower FA, individuals with SPD show sparing. Our findings are consistent with a pattern of milder thalamo-frontal dysconnectivity in SPD than schizophrenia.
doi:10.1016/j.schres.2012.08.022
PMCID: PMC3742803  PMID: 22995934
Schizotypal personality disorder; Diffusion tensor imaging; Tractography; Magnetic resonance imaging; Anisotropy; Internal capsule
9.  Potentiated amygdala response to repeated emotional pictures in borderline personality disorder 
Biological psychiatry  2012;72(6):448-456.
Background
Borderline personality disorder (BPD) is characterized by an inability to regulate emotional responses. The amygdala is important in learning about the valence (goodness and badness) of stimuli and has been reported to function abnormally in BPD.
Methods
Event-related functional MRI (fMRI) was employed in three groups: unmedicated BPD (n=33) and schizotypal personality disorder (SPD;n=28) participants and healthy controls (n=32) during a task involving an intermixed series of unpleasant, neutral, and pleasant pictures each presented twice within their respective trial block/run. The amygdala was hand-traced on each participant’s structural-MRI scan which was co-registered to their BOLD-scan. Amygdala responses were examined with a mixed-model MANOVA with repeated measures.
Results
Compared with both control groups, BPD patients showed greater amygdala activation, particularly to the repeated emotional but not neutral pictures and a prolonged return to baseline for the overall BOLD response averaged across all pictures. Despite amygdala overactivation, BPD patients showed a blunted response on the self-report ratings of emotional but not neutral pictures. Fewer dissociative symptoms in both patient groups were associated with greater amygdala activation to repeated unpleasant pictures.
Conclusions
The increased amygdala response to the repeated emotional pictures observed in BPD was not observed in SPD patients suggesting diagnostic specificity. This BPD-related abnormality is consistent with the well-documented clinical feature of high sensitivity to emotional stimuli with unusually strong and long-lasting reactions. The finding of a mismatch between physiological and self-report measures of emotion reactivity in BPD patients suggests they may benefit from treatments which help them recognize emotions.
doi:10.1016/j.biopsych.2012.03.027
PMCID: PMC3415575  PMID: 22560044
borderline personality disorder; schizotypal personality disorder; amygdala; emotion; fMRI; arousal; valence
10.  Striatal Activity in Borderline Personality Disorder with Comorbid Intermittent Explosive Disorder: Sex Differences 
Journal of psychiatric research  2012;46(6):797-804.
Borderline Personality Disorder (BPD) is associated with behavioral and emotional dysregulation, particularly in social contexts; however, the underlying pathophysiology at the level of brain function is not well understood. Previous studies found abnormalities in frontal cortical and limbic areas suggestive of poor frontal regulation of downstream brain regions. However, the striatum, which is closely connected with the medial frontal cortices and plays an important role in motivated behaviors and processing of rewarding stimuli, has been understudied in BPD. Here we hypothesized that, in addition to frontal dysfunction, BPD patients may show abnormal striatal function. In this study, 38 BPD patients with intermittent explosive disorder (BPD-IED) and 36 healthy controls (HC) participated in the Point Subtraction Aggression Paradigm (PSAP), a computer game played with a fictitious other player. 18Fluoro-deoxyglucose positron emission tomography (FDG-PET) measured relative glucose metabolism (rGMR) within caudate and putamen in response to aggression-provoking and non-provoking versions of the PSAP. Male BPD-IED patients had significantly lower striatal rGMR than all other groups during both conditions, although male and female BPD-IED patients did not differ in clinical or behavioral measures. These sex differences suggest differential involvement of frontal-striatal circuits in BPD-IED, and are discussed in relation to striatal involvement in affective learning and social decision-making.
doi:10.1016/j.jpsychires.2012.02.014
PMCID: PMC3645307  PMID: 22464337
Borderline personality disorder; intermittent explosive disorder; striatum; aggression; positron emission tomography
11.  Dorso- and Ventro-lateral Prefrontal Volume and Spatial Working Memory in Schizotypal Personality Disorder 
Behavioural brain research  2010;218(2):335-340.
Schizotypal personality disorder (SPD) individuals and borderline personality disorder (BPD) individuals have been reported to show neuropsychological impairments and abnormalities in brain structure. However, relationships between neuropsychological function and brain structure in these groups are not well understood. This study compared visual-spatial working memory (SWM) and its associations with dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) gray matter volume in 18 unmedicated SPD patients with no BPD traits, 18 unmedicated BPD patients with no SPD traits, and 16 healthy controls (HC). Results showed impaired SWM in SPD but not BPD, compared with HC. Moreover, among the HC group, but not SPD patients, better SWM performance was associated with larger VLPFC (BA44/45) gray matter volume (Fisher's Z p-values<0.05). Findings suggest spatial working memory impairments may be a core neuropsychological deficit specific to SPD patients and highlight the role of VLPFC subcomponents in normal and dysfunctional memory performance.
doi:10.1016/j.bbr.2010.11.042
PMCID: PMC3049905  PMID: 21115066
working memory; borderline personality disorder; schizotypal personality disorder; dorsolateral prefrontal cortex; ventrolateral prefrontal cortex; MRI
12.  Cingulate and Temporal Lobe Fractional Anisotropy in Schizotypal Personality Disorder 
Neuroimage  2011;55(3):900-908.
Background
Consistent with the clinical picture of milder symptomatology in schizotypal personality disorder (SPD) than schizophrenia, morphological studies indicate SPD abnormalities in temporal lobe regions but to a much lesser extent in prefrontal regions implicated in schizophrenia. Lower fractional anisotropy (FA), a measure of white-matter integrity within prefrontal, temporal, and cingulate regions has been reported in schizophrenia but has been little studied in SPD.
Aims
To examine temporal and prefrontal FA in 30 neuroleptic-naïve SPD patients and 35 matched healthy controls. We hypothesized that compared with healthy controls (HCs), SPD patients would exhibit lower FA in temporal and anterior cingulum regions but relative sparing in prefrontal regions.
Method
We acquired diffusion tensor imaging (DTI) in all participants and examined FA in the white matter underlying Brodmann areas (BAs) in dorsolateral prefrontal (BA44,45,46), temporal (BA22,21,20), and cingulum (BA25,24,31,23,29) regions using multivariate-ANOVAs.
Results
Compared with healthy controls, the SPD group had significantly lower FA in left temporal but not prefrontal regions. In the cingulum, FA was lower in the SPD group in posterior regions (BA31 and 23), higher in anterior (BA25) regions and lower overall in the right but not left cingulum. Among the SPD group, lower FA in the cingulum was associated with more severe negative symptoms (e.g., odd speech).
Conclusions
Similar to schizophrenia, our results indicate cingulum-temporal lobe FA abnormalities in SPD and suggest that cingulum abnormalities are associated with negative symptoms.
doi:10.1016/j.neuroimage.2010.12.082
PMCID: PMC3262398  PMID: 21223999
Diffusion tensor imaging; schizotypal personality disorder; dorsolateral prefrontal cortex; temporal lobe; cingulum; fractional anisotropy
13.  Tryptophan Hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls 
Journal of psychiatric research  2010;44(15):1075-1081.
Background
There is decreased serotonergic function in impulsive aggression and borderline personality disorder (BPD), and genetic association studies suggest a role of serotonergic genes in impulsive aggression and BPD. Only one study has analyzed the association between the tryptophan-hydroxylase 2 (TPH2) gene and BPD. A TPH2 “risk” haplotype has been described that is associated with anxiety, depression and suicidal behavior.
Methods
We assessed the relationship between the previously identified “risk” haplotype at the TPH2 locus and BPD diagnosis, impulsive aggression, affective lability, and suicidal/parasuicidal behaviors, in a well-characterized clinical sample of 103 healthy controls (HCs) and 251 patients with personality disorders (109 with BPD). A logistic regression including measures of depression, affective lability and aggression scores in predicting “risk” haplotype was conducted.
Results
The prevalence of the “risk” haplotype was significantly higher in patients with BPD compared to HCs. Those with the “risk” haplotype have higher aggression and affect lability scores and more suicidal/parasuicidal behaviors than those without it. In the logistic regression model, affect lability was the only significant predictor and it correctly classified 83.1% of the subjects as “risk” or “non-risk” haplotype carriers.
Conclusions
We found an association between the previously described TPH2 “risk” haplotype and BPD diagnosis, affective lability, suicidal/parasuicidal behavior, and aggression scores.
doi:10.1016/j.jpsychires.2010.03.014
PMCID: PMC2955771  PMID: 20451217
Borderline personality disorder; TPH2; suicidal behavior; affective instability; impulsive aggression
14.  INCREASED 5-HT2A RECEPTOR AVAILABILITY IN THE ORBITOFRONTAL CORTEX OF PHYSICALLY AGGRESSIVE PERSONALITY DISORDERED PATIENTS 
Biological psychiatry  2010;67(12):1154-1162.
Background
Impulsive physical aggression is a common and problematic feature of many personality disorders. The serotonergic system is known to be involved in the pathophysiology of aggression, and multiple lines of evidence have implicated the 5-HT2A receptor (5-HT2AR). We sought to examine the role of the 5-HT2AR in impulsive aggression specifically in the orbitofrontal cortex (OFC), given that our own studies and an extensive literature indicate that serotonergic disturbances in the OFC are linked to aggression. We have previously hypothesized that increased 5-HT2AR function in the OFC is a state phenomenon which promotes impulsive aggression.
Methods
5-HT2AR availability was measured with positron emission tomography and the selective 5-HT2AR antagonist radioligand [11C]MDL100907 in two groups of impulsively aggressive personality disordered patients --14 with current physical aggression, and 15 without current physical aggression --and 25 healthy controls. Clinical ratings of various symptom dimensions were also obtained.
Results
Orbitofrontal 5-HT2AR availability was greater in patients with current physical aggression compared to patients without current physical aggression and healthy controls; no differences in OFC 5-HT2AR availability were observed between patients without current physical aggression and healthy controls. No significant differences in 5-HT2AR availability were observed in other brain regions examined. Among both groups of impulsively aggressive personality disordered patients combined, OFC 5-HT2AR availability was correlated, specifically, with a state measure of impulsive aggression.
Conclusions
These findings are consistent with our previously described model in which impulsive aggression is related to dynamic changes in 5-HT2AR function in the OFC.
doi:10.1016/j.biopsych.2010.03.013
PMCID: PMC3091264  PMID: 20434136
Aggression; Personality Disorder; Intermittent Explosive Disorder; Serotonin; Positron Emission Tomography; Orbitofrontal Cortex
15.  Neural Correlates of Using Distancing to Regulate Emotional Responses to Social Situations 
Neuropsychologia  2010;48(6):1813-1822.
Cognitive reappraisal is a commonly used and highly adaptive strategy for emotion regulation that has been studied in healthy volunteers. Most studies to date have focused on forms of reappraisal that involve reinterpreting the meaning of stimuli and have intermixed social and non-social emotional stimuli. Here we examined the neural correlates of the regulation of negative emotion elicited by social situations using a less studied form of reappraisal known as distancing. Whole brain fMRI data were obtained as participants viewed aversive and neutral social scenes with instructions to either simply look at and respond naturally to the images or to downregulate their emotional responses by distancing. Three key findings were obtained accompanied with the reduced aversive response behaviorally. First, across both instruction types, aversive social images activated the amygdala. Second, across both image types, distancing activated the precuneus and posterior cingulate cortex (PCC), intraparietal sulci (IPS), and middle/superior temporal gyrus (M/STG). Third, when distancing one’s self from aversive images, activity increased in dorsal anterior cingulate (dACC), medial prefrontal cortex (mPFC), lateral prefrontal cortex, precuneus and PCC, IPS, and M/STG, meanwhile, and decreased in the amygdala. These findings demonstrate that distancing from aversive social cues modulates amygdala activity via engagement of networks implicated in social perception, perspective-taking, and attentional allocation.
doi:10.1016/j.neuropsychologia.2010.03.002
PMCID: PMC2905649  PMID: 20226799
Emotion; Cognitive Reappraisal; Social Cognitive Neuroscience; Emotional Distancing; Emotion Regulation; fMRI
16.  Pergolide Treatment of Cognitive Deficits Associated with Schizotypal Personality Disorder: Continued Evidence of the Importance of the Dopamine System in the Schizophrenia Spectrum 
Neuropsychopharmacology  2010;35(6):1356-1362.
Cognitive deficits observed in schizophrenia are also frequently found in individuals with other schizophrenia spectrum disorders, such as schizotypal personality disorder (SPD). Dopamine appears to be a particularly important modulator of cognitive processes such as those impaired in schizophrenia spectrum disorders. In a double-blind, placebo-controlled clinical trial, we administered pergolide, a dopamine agonist targeting D1 and D2 receptors, to 25 participants with SPD and assessed the effect of pergolide treatment, as compared with placebo, on neuropsychological performance. We found that the pergolide group showed improvements in visual-spatial working memory, executive functioning, and verbal learning and memory. These results suggest that dopamine agonists may provide benefit for the cognitive abnormalities of schizophrenia spectrum disorders.
doi:10.1038/npp.2010.5
PMCID: PMC3055340  PMID: 20130535
schizotypal personality; schizotypy; schizophrenia spectrum; cognition; pergolide; dopamine; Schizophrenia/Antipsychotics; Dopamine; Cognition; Clinical Pharmacology/Trials; schizotypal personality; pergolide
17.  Laboratory Induced Aggression: A PET Study of Aggressive Individuals with Borderline Personality Disorder 
Biological psychiatry  2009;66(12):1107-1114.
Background
Borderline personality disorder (BPD) is often associated with symptoms of impulsive aggression, which pose a threat to patients themselves and to others. Preclinical studies show that orbital frontal cortex (OFC) plays a role in regulating impulsive aggression. Prior work has found OFC dysfunction in BPD.
Methods
We employed a task to provoke aggressive behavior, the Point Subtraction Aggression Paradigm (PSAP), which has never previously been used during functional brain imaging. Thirty-eight BPD patients with impulsive aggression (BPD-IED) and 36 age-matched healthy controls (HC) received 18FDG-PET on two occasions with a provocation and non-provocation version of the PSAP. For each participant, we measured mean relative glucose metabolism in cortical Brodmann areas (BAs) in each hemisphere; difference scores (Provoked–Non-provoked) were calculated. A whole brain exploratory analysis for the double difference of BPD-IED–HC for Provoked–Non-provoked was also conducted.
Results
BPD-IED patients were significantly more aggressive than HC on the PSAP. BPD-IED patients also increased relative glucose metabolic rate (rGMR) in OFC and amygdala when provoked, while HC decreased rGMR in these areas. However, HC increased rGMR in anterior, medial, and dorsolateral prefrontal regions during provocation more than BPD-IED patients.
Conclusions
Patients responded aggressively and showed heightened rGMR in emotional brain areas, including amygdala and OFC in response to provocation, but not in more dorsal brain regions associated with cognitive control of aggression. In contrast, HC increased rGMR in dorsal regions of PFC during aggression provocation, brain regions involved in top-down cognitive control of aggression and, more broadly, of emotion.
doi:10.1016/j.biopsych.2009.07.015
PMCID: PMC2788117  PMID: 19748078
brain imaging; Point Subtraction Aggression Paradigm; PSAP; emotion
18.  Neural Correlates of the Use of Psychological Distancing to Regulate Responses to Negative Social Cues: A Study of Patients with Borderline Personality Disorder 
Biological psychiatry  2009;66(9):854.
Background
Emotional instability is a defining feature of borderline personality disorder (BPD), yet little is understood about its underlying neural correlates. One possible contributing factor to emotional instability is a failure to adequately employ adaptive cognitive regulatory strategies such as psychological distancing.
Method
To determine whether there are differences in neural dynamics underlying this control strategy, between BPD patients and healthy volunteers (HC’s), BOLD fMRI signals were acquired as 18 BPD and 16 HC subjects distanced from or simply looked at negative and neutral pictures depicting social interactions. Contrasts in signal between distance and look condition were compared between groups to identify commonalities and differences in regional activation.
Results
BPD patients show a different pattern of activation compared to HC subjects when looking at negative vs. neutral pictures. When distancing vs. looking at negative pictures, both groups showed decreased negative affect in rating and increased activation of the dorsolateral prefrontal cortex, areas near/along the intraparietal sulcus (IPS), ventrolateral prefrontal cortex and posterior cingulate/precuneus regions. However, the BPD group showed less BOLD signal change in dorsal anterior cingulate cortex and IPS, less deactivation in the amygdala and greater activation in the superior temporal sulcus and superior frontal gyrus.
Conclusion
BPD and HC subjects display different neural dynamics while passively viewing social emotional stimuli. In addition, BPD patients do not engage the cognitive control regions to the extent that HC’s do when employing a distancing strategy to regulate emotional reactions, which may be a factor contributing to the affective instability of BPD.
doi:10.1016/j.biopsych.2009.06.010
PMCID: PMC2821188  PMID: 19651401
Emotion; Cognitive Reappraisal; Social Cognitive Neuroscience; Psychological Distancing; Emotion Regulation; fMRI
19.  Smaller superior temporal gyrus volume specificity in schizotypal personality disorder 
Schizophrenia research  2009;112(1-3):14-23.
Background
Superior temporal gyrus (STG/BA22) volume is reduced in schizophrenia and to a milder degree in schizotypal personality disorder (SPD), representing a less severe disorder in the schizophrenia-spectrum. SPD and Borderline personality disorder (BPD) are severe personality disorders characterized by social and cognitive dysfunction. However, while SPD is characterized by social withdrawal/anhedonia, BPD is marked by hyper-reactivity to interpersonal stimuli and hyper-emotionality. This is the first morphometric study to directly compare SPD and BPD patients in temporal volume.
Methods
We compared three age-gender- and education-matched groups: 27 unmedicated SPD individuals with no BPD traits, 52 unmedicated BPD individuals with no SPD traits, and 45 healthy controls. We examined gray matter volume of frontal and temporal lobe Brodmann areas (BAs), and dorsal/ventral amygdala from 3T magnetic resonance imaging.
Results
In the STG, an auditory association area reported to be dysfunctional in SPD and BPD, the SPD patients had significantly smaller volume than healthy controls and BPD patients. No group differences were found between BPD patients and controls. Smaller BA22 volume was associated with greater symptom severity in SPD patients. Reduced STG volume may be an important endophenotype for schizophrenia-spectrum disorders. SPD is distinct from BPD in terms of STG volume abnormalities which may reflect different underlying pathophysiological mechanisms and could help discriminate between them.
doi:10.1016/j.schres.2009.04.027
PMCID: PMC2782902  PMID: 19473820
Schizotypal personality disorder; Borderline personality disorder; Schizophrenia; MRI; Brodmann area 22; Auditory cortex
20.  Evaluation of behavioral impulsivity and aggression tasks as endophenotypes for borderline personality disorder 
Journal of psychiatric research  2009;43(12):1036-1048.
Borderline personality disorder (BPD) is marked by aggression and impulsive, often self-destructive behavior. Despite the severe risks associated with BPD, relatively little is known about the disorder’s etiology. Identification of genetic correlates (endophenotypes) of BPD would improve the prospects of targeted interventions for more homogeneous subsets of borderline patients characterized by specific genetic vulnerabilities. The current study evaluated behavioral measures of aggression and impulsivity as potential endophenotypes for BPD. Subjects with BPD (N = 127), a non cluster B personality disorder (OPD N = 122), or healthy volunteers (HV N = 112) completed self report and behavioral measures of aggression, motor impulsivity and cognitive impulsivity. Results showed that BPD subjects demonstrated more aggression and motor impulsivity than HV (but not OPD) subjects on behavioral tasks. In contrast, BPD subjects self-reported more impulsivity and aggression than either comparison group. Subsequent analyses showed that among BPD subjects behavioral aggression was associated with self-reported aggression, while behavioral and self-report impulsivity measures were more modestly associated. Overall, the results provide partial support for the use of behavioral measures of aggression and motor impulsivity as endophenotypes for BPD, with stronger support for behavioral aggression measures as an endophenotype for aggression within BPD samples.
doi:10.1016/j.jpsychires.2009.01.002
PMCID: PMC2853811  PMID: 19232640
Borderline personality disorder; Endophenotype; Aggression; Impulsivity
21.  Preclinical assessment for selectively disrupting a traumatic memory via post-retrieval inhibition of glucocorticoid receptors 
Biological psychiatry  2008;65(3):249-257.
Background
Traumatic experiences may lead to debilitating psychiatric disorders including acute stress disorder and post-traumatic stress disorder. Current treatments for these conditions are largely ineffective; therefore, novel therapies are needed. A cardinal symptom of these pathologies is the re-experiencing of the trauma through intrusive memories and nightmares. Studies in animal models indicate that memories can be weakened by interfering with the post-retrieval re-stabilization process known as memory reconsolidation. We previously reported that, in rats, intra-amygdala injection of the glucocorticoid receptor antagonist RU38486 disrupts the reconsolidation of a traumatic memory. Here we tested parameters important for designing novel clinical protocols targeting the reconsolidation of a traumatic memory with RU38486.
Methods
Using rat inhibitory avoidance, we tested the efficacy of post-retrieval systemic administration of RU38486 on subsequent memory retention and evaluated several key preclinical parameters.
Results
Systemic administration of RU38486 before or after retrieval persistently weakens IA memory retention in a dose-dependent manner, and memory does not re-emerge following footshock reminders. The efficacy of treatment is a function of the intensity of the initial trauma, and intense traumatic memories can be disrupted by changing the time and number of interventions. Furthermore, one or two treatments are sufficient to maximally disrupt the memory. The treatment selectively targets the reactivated memory without interfering with the retention of another non-reactivated memory.
Conclusions
RU38486 is a potential novel treatment for psychiatric disorders linked to traumatic memories. Our data provide the parameters for designing promising clinical trials for the treatment of flashback-type symptoms of PTSD.
doi:10.1016/j.biopsych.2008.07.005
PMCID: PMC2668168  PMID: 18708183
22.  Childhood trauma and basal cortisol in people with personality disorders 
Comprehensive psychiatry  2008;50(1):34-37.
This study examined the influence of various forms of childhood abuse on basal cortisol levels in a sample of adults with Axis II personality disorders. Participants included 63 adults (n=19 women) who provided basal plasma cortisol samples and completed the Childhood Trauma Questionnaire. Linear regression analyses that included all five subscales (i.e., sexual abuse, physical abuse, emotional abuse, physical neglect and emotional neglect) demonstrated that Physical abuse was related to lower cortisol levels (β = −.43, p=.007), consistent with prior literature. In contrast, Physical neglect was associated with higher cortisol (β = .36, p=.02), after controlling for other forms of abuse. Results are consistent with the view that childhood trauma has long-lasting neurobiological effects and suggest that different forms of trauma may have distinct biological effects.
doi:10.1016/j.comppsych.2008.05.007
PMCID: PMC2614618  PMID: 19059511
personality disorder; cortisol; childhood trauma exposure
23.  Frontal-striatal-thalamic mediodorsal nucleus dysfunction in schizophrenia-spectrum patients during sensorimotor gating 
NeuroImage  2008;42(3):1164-1177.
Prepulse inhibition (PPI) refers to a reduction in the amplitude of the startle eye-blink reflex to a strong sensory stimulus, the pulse, when it is preceded shortly by a weak stimulus, the prepulse. PPI is a measure of sensorimotor gating which serves to prevent the interruption of early attentional processing and it is impaired in schizophrenia-spectrum patients. In healthy individuals, PPI is more robust when attending to than ignoring a prepulse. Animal and human work demonstrate frontal-striatal-thalamic (FST) circuitry modulates PPI. This study used functional magnetic resonance imaging (fMRI) to investigate FST-circuitry during an attention-to-prepulse paradigm in 26 unmedicated schizophrenia-spectrum patients (13 schizotypal personality disorder (SPD), 13 schizophrenia) and 13 healthy controls. During 3T-fMRI acquisition and separately measured psychophysiological assessment of PPI, participants heard an intermixed series of high- and low-pitched tones serving as prepulses to an acoustic-startle stimulus. Event-related BOLD-response amplitude curves in FST regions traced on co-registered anatomical MRI were examined. Controls showed greater activation during attended than ignored PPI conditions in all FST regions--dorsolateral prefrontal cortex (Brodmann areas 46,9), striatum (caudate, putamen), and the thalamic mediodorsal nucleus (MDN). In contrast, schizophrenia patients failed to show differential BOLD responses in FST-circuitry during attended and ignored prepulses, whereas SPD patients showed greater-than-normal activation during ignored prepulses. Among the three diagnostic groups, lower left caudate BOLD activation during the attended PPI condition was associated with more deficient sensorimotor gating as measured by PPI. Schizophrenia-spectrum patients exhibit inefficient utilization of FST-circuitry during attentional modulation of PPI. Schizophrenia patients have reduced recruitment of FST-circuitry during task-relevant stimuli, whereas SPD patients allocate excessive resources during task-irrelevant stimuli. Dysfunctional FST activation, particularly in the caudate may underlie PPI abnormalities in schizophrenia-spectrum patients.
doi:10.1016/j.neuroimage.2008.05.039
PMCID: PMC2548278  PMID: 18588988
dorsolateral prefrontal cortex; caudate nucleus; putamen; thalamus; mediodorsal nucleus; fMRI; schizophrenia; schizotypal personality disorder; startle; prepulse inhibition; attention; sensorimotor gating
24.  Frontolimbic structural changes in borderline personality disorder 
Journal of psychiatric research  2007;42(9):727-733.
Objective
Frontolimbic dysfunction is observed in borderline personality disorder (BPD), with responses to emotional stimuli that are exaggerated in the amygdala and impaired in the anterior cingulate cortex (ACC). This pattern of altered function is consistent with animal models of stress responses and depression, where hypertrophic changes in the amygdala and atrophic changes in the ACC are observed. We tested the hypothesis that BPD patients exhibit gross structural changes that parallel the respective increases in amygdala activation and impairment of rostral/subgenual ACC activation.
Methods
12 unmedicated outpatients with BPD by DSM-IV and 12 normal control (NC) subjects underwent a high-resolution T1-weighted structural MRI scan. Relative gray matter concentration (GMC) in spatially-normalized images was evaluated by standard voxel-based morphometry, with voxel-wise subject group comparisons by t test constrained to amygdala and rostral/subgenual ACC.
Results
The BPD group was significantly higher than NC in GMC in the amygdala. In contrast, the BPD group showed significantly lower GMC than the NC group in left rostral/subgenual ACC.
Conclusions
This sample of BPD patients exhibits gross structural changes in gray matter in cortical and subcortical limbic regions that parallel the regional distribution of altered functional activation to emotional stimuli among these same subjects. While the histological basis for GMC changes in adult clinical populations is poorly-known at present, the observed pattern is consistent with the direction of change, in animal models of anxiety and depression, of neuronal number and/or morphological complexity in both the amygdala (where it is increased) and ACC (where it is decreased).
doi:10.1016/j.jpsychires.2007.07.015
PMCID: PMC2708084  PMID: 17825840
borderline personality disorder; frontolimbic; amygdala; anterior cingulate cortex; gray matter; voxel-based morphometry
25.  Cortical Gray and White Matter Volume in Unmedicated Schizotypal and Schizophrenia Patients 
Schizophrenia research  2008;101(1-3):111-123.
Magnetic resonance (MR) imaging studies have revealed fronto-temporal cortical gray matter volume reductions in schizophrenia. However, whether age- and sex-matched unmedicated schizotypal personality disorder (SPD) patients share some or all of the structural brain-imaging characteristics of schizophrenia patients has not been studied. We examined cortical gray/white matter volumes in a large sample of unmedicated schizophrenia-spectrum patients (n=79 SPD, n=57 schizophrenia) and 148 healthy controls. MR images were reoriented to standard position parallel to the anterior-posterior commissure line, segmented into gray and white matter tissue types, and assigned to Brodmann areas (BAs) using a postmortem-histological atlas. Group differences in regional volume of gray and white matter in the BAs was examined with MANOVA. Schizophrenia patients had reduced gray matter volume widely across the cortex but more marked in frontal and temporal lobes. SPD patients had reductions in the same regions but only about half that observed in schizophrenia and sparing in key regions including BA10. In schizophrenia, greater fronto-temporal volume loss was associated with greater negative symptom severity and in SPD, greater interpersonal and cognitive impairment. Overall, our findings suggest that increased prefrontal volume in BA10 and sparing of volume loss in temporal cortex (BAs 22 and 20) may be a protective factor in SPD which reduces vulnerability to psychosis.
doi:10.1016/j.schres.2007.12.472
PMCID: PMC2672563  PMID: 18272348
MRI; schizophrenia; schizotypal personality disorder; frontal lobe volume; temporal lobe volume; cingulate gyrus; negative symptoms; gray matter volume; white matter volume

Results 1-25 (26)