PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Downregulation of Chloroplast RPS1 Negatively Modulates Nuclear Heat-Responsive Expression of HsfA2 and Its Target Genes in Arabidopsis 
PLoS Genetics  2012;8(5):e1002669.
Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants.
Author Summary
As a consequence of global warming, increasing temperature is a serious threat to crop production worldwide and may influence the objectives of breeding programs. As a universal cellular response to a shift up in temperature, the heat stress response represents the first line of inducible defense against imbalances in cellular homeostasis in the prokaryotic and eukaryotic kingdoms. Given that components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants, the chloroplasts were proposed as sensors to a shift up in temperature. However, the mechanism by which chloroplasts regulate the expression of nuclear heat stress–responsive gene expression according to the functional state of chloroplasts under heat stress remains unknown. In this study, we have identified chloroplast ribosomal protein S1 (RPS1) as a heat-responsive protein through proteomic screening of heat-responsive proteins. We have established a previously unrecognized molecular connection between the downregulation of RPS1 expression in chloroplast and the activation of HsfA2-dependent heat-responsive genes in nucleus, which is required for heat tolerance in higher plants. Our data provide new insights into the mechanisms whereby plant cells modulate nuclear gene expression to keep accordance with the current status of chloroplasts in response to heat stress.
doi:10.1371/journal.pgen.1002669
PMCID: PMC3342936  PMID: 22570631

Results 1-1 (1)