Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks 
The Journal of Clinical Investigation  2013;123(12):5342-5350.
The ability to map the functional connectivity of discrete cell types in the intact mammalian brain during behavior is crucial for advancing our understanding of brain function in normal and disease states. We combined designer receptor exclusively activated by designer drug (DREADD) technology and behavioral imaging with μPET and [18F]fluorodeoxyglucose (FDG) to generate whole-brain metabolic maps of cell-specific functional circuits during the awake, freely moving state. We have termed this approach DREADD-assisted metabolic mapping (DREAMM) and documented its ability in rats to map whole-brain functional anatomy. We applied this strategy to evaluating changes in the brain associated with inhibition of prodynorphin-expressing (Pdyn-expressing) and of proenkephalin-expressing (Penk-expressing) medium spiny neurons (MSNs) of the nucleus accumbens shell (NAcSh), which have been implicated in neuropsychiatric disorders. DREAMM revealed discrete behavioral manifestations and concurrent engagement of distinct corticolimbic networks associated with dysregulation of Pdyn and Penk in MSNs of the NAcSh. Furthermore, distinct neuronal networks were recruited in awake versus anesthetized conditions. These data demonstrate that DREAMM is a highly sensitive, molecular, high-resolution quantitative imaging approach.
PMCID: PMC3859392  PMID: 24231358
2.  Cannabis Use during Adolescent Development: Susceptibility to Psychiatric Illness 
Cannabis use is increasingly pervasive among adolescents today, even more common than cigarette smoking. The evolving policy surrounding the legalization of cannabis reaffirms the need to understand the relationship between cannabis exposure early in life and psychiatric illnesses. cannabis contains psychoactive components, notably Δ9-tetrahydrocannabinol (THC), that interfere with the brain’s endogenous endocannabinoid system, which is critically involved in both pre- and post-natal neurodevelopment. Consequently, THC and related compounds could potentially usurp normal adolescent neurodevelopment, shifting the brain’s developmental trajectory toward a disease-vulnerable state, predisposing early cannabis users to motivational, affective, and psychotic disorders. Numerous human studies, including prospective longitudinal studies, demonstrate that early cannabis use is associated with major depressive disorder and drug addiction. A strong association between schizophrenia and cannabis use is also apparent, especially when considering genetic factors that interact with this environmental exposure. These human studies set a foundation for carefully controlled animal studies which demonstrate similar patterns following early cannabinoid exposure. Given the vulnerable nature of adolescent neurodevelopment and the persistent changes that follow early cannabis exposure, the experimental findings outlined should be carefully considered by policymakers. In order to fully address the growing issues of psychiatric illnesses and to ensure a healthy future, measures should be taken to reduce cannabis use among teens.
PMCID: PMC3796318  PMID: 24133461
cannabis; drug addiction; negative affect; schizophrenia; adolescent
3.  A Heroin Addiction Severity-Associated Intronic Single Nucleotide Polymorphism Modulates Alternative Pre-mRNA Splicing of the μ Opioid Receptor Gene OPRM1 via hnRNPH Interactions 
The Journal of Neuroscience  2014;34(33):11048-11066.
Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction.
PMCID: PMC4131016  PMID: 25122903
addiction; heroin; hnRNPH; opioid receptor; SNP; splicing
4.  Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signaling 
Nature communications  2014;5:4421.
Local environmental cues are indispensable for axonal growth and guidance during brain circuit formation. Here, we combine genetic and pharmacological tools, as well as systems neuroanatomy in human fetuses and mouse models, to study the role of endocannabinoid and Slit/Robo signaling in axonal growth. We show that excess 2-arachidonoylglycerol, an endocannabinoid affecting directional axonal growth, triggers corpus callosum enlargement due to errant CB1 cannabinoid receptor (CB1R)-containing corticofugal axon spreading. This phenotype mechanistically relies on the premature differentiation and end-feet proliferation of CB2R-expressing oligodendrocytes. We further show the dependence of both axonal Robo1 positioning and oligodendroglial Slit2 production on cell-type specific cannabinoid receptor activation. Accordingly, Robo1 and/or Slit2 manipulation limits endocannabinoid modulation of axon guidance. We conclude that endocannabinoids can configure focal Slit2/Robo1 signaling to modulate directional axonal growth, which may provide a basis for understanding impaired brain wiring associated with metabolic deficits and prenatal drug exposure.
PMCID: PMC4110686  PMID: 25030704
Axon guidance; brain development; chemorepulsion; corticofugal axon
5.  Trajectory of Adolescent Cannabis Use on Addiction Vulnerability 
Neuropharmacology  2013;76(0 0):10.1016/j.neuropharm.2013.07.028.
The adolescent brain is a period of dynamic development making it vulnerable to environmental factors such as drug exposure. Of the illicit drugs, cannabis is most used by teenagers since it is perceived by many to be of little harm. This perception has led to a growing number of states approving its legalization and increased accessibility. Most of the debates and ensuing policies regarding cannabis were done without consideration of its impact on one of the most vulnerable population, namely teens, or without consideration of scientific data. We provide an overview of the endocannabinoid system in relation to adolescent cannabis exposure and provide insights regarding factors such as genetics and behavioral traits that confer risk for subsequent addiction. While it is clear that more systematic scientific studies are needed to understand the long-term impact of adolescent cannabis exposure on brain and behavior, the current evidence suggests that it has a far-reaching influence on adult addictive behaviors particularly for certain subsets of vulnerable individuals.
PMCID: PMC3858398  PMID: 23954491
marijuana; cannabinoid; opioid neuropeptide; nucleus accumbens; prefrontal cortex
6.  Gender differences in prodynorphin but not proenkephalin mRNA expression in the striatum of adolescent rats exposed to prenatal cocaine 
Neuroscience letters  2007;421(3):213-217.
The objective of this study was to determine if prenatal cocaine affects the levels of prodynorphin and proenkephalin mRNA in male and female adolescent rats. Pregnant dams received cocaine or vehicle from gestational days 8-22 and upon delivery, the pups were fostered. At postnatal days 42-44, pups were killed and brains removed and frozen. Sections of striatum and nucleus accumbens were processed for prodynorphin and proenkephalin mRNA expression. Prenatal cocaine did not affect the expression of proenkephalin mRNA, but males showed higher expression than females. However, prodynorphin mRNA was lower in female rats exposed to cocaine compared to controls. Prenatal cocaine appears to have unique effects on neuropeptides during adolescence.
PMCID: PMC4237583  PMID: 17574751
7.  HIV-related cognitive impairment shows bi-directional association with dopamine receptor DRD1 and DRD2 polymorphisms in substance dependent and independent populations 
Journal of neurovirology  2013;19(5):10.1007/s13365-013-0204-8.
It has been postulated that drugs of abuse act synergistically with HIV, leading to increased neurotoxicity and neurocognitive impairment. The CNS impacts of HIV and drug use converge on the mesocorticolimbic dopamine (DA) system, which contains two main receptor subtypes: dopamine receptor 1 and 2. (DRD1, DRD2). DRD1 and DRD2 have been linked to substance dependence; whether they predict HIV-associated neurocognitive disorder (HAND) is unclear. Using an advanced-stage HIV+ population, we sought to determine if drug dependence impacts the contribution of DA receptor polymorphisms on neurocognition. We observed that both DRD1 and DRD2 polymorphisms were associated with opiate and cocaine dependence (P<0.05) in Caucasian subjects, but not African-American individuals. Using linear regression analysis, we examined the polymorphisms for associations with neuropsychological performance in global and cognitive domain T-scores (Motor, Processing Speed, Verbal Fluency, Learning, Memory, Executive Functioning, Working Memory) while controlling for opiate and cocaine dependency. In the Motor domain, we observed an association for two DRD2 polymorphisms (P<0.05) in Caucasian subjects. The effects differed for substance dependence groups as the direction of the correlations with DRD2 were opposite to what was seen in subjects without these dependencies. In African-American subjects, associations were observed in nearly every domain and again, the direction of the correlation differed between substance dependent and independent groups. We conclude that studies to examine genetic risk for HAND must carefully account for substance dependence patterns when assaying dopaminergic systems, as the neurobiological substrates of cognition in HIV populations may vary with tonic alterations secondary to chronic substance exposures.
PMCID: PMC3856629  PMID: 24078558
HAND; cocaine; opiate; SNP
8.  G9a influences neuronal subtype specification in striatum 
Nature neuroscience  2014;17(4):533-539.
Cocaine-mediated repression of the histone methyltransferase (HMT) G9a has recently been implicated in transcriptional, morphological, and behavioral responses to chronic cocaine administration. Here, using a ribosomal affinity purification approach, we find that G9a repression by cocaine occurs in both Drd1 (striatonigral)- and Drd2 (striatopallidal)-expressing medium spiny neurons (MSNs). Conditional knockout and overexpression of G9a within these distinct cell types, however, reveals divergent behavioral phenotypes in response to repeated cocaine treatment. Our studies further indicate that such developmental deletion of G9a selectively in Drd2 neurons results in the unsilencing of transcriptional programs normally specific to striatonigral neurons, and the acquisition of Drd1-associated projection and electrophysiological properties. This partial striatopallidal to striatonigral ‘switching’ phenotype in mice indicates a novel role for G9a in contributing to neuronal subtype identity, and suggests a critical function for cell-type specific histone methylation patterns in the regulation of behavioral responses to environmental stimuli.
PMCID: PMC3972624  PMID: 24584053
9.  Moderator effects of working memory on the stability of ADHD symptoms by dopamine receptor gene polymorphisms during development 
Developmental science  2014;17(4):584-595.
We tested the hypothesis that dopamine D1 and D2 receptor gene (DRD1 and DRD2, respectively) polymorphisms and the development of working memory skills can interact to influence symptom change over 10 years in children with attention-deficit/hyperactivity disorder (ADHD). Specifically, we examined whether improvements in working memory maintenance and manipulation from childhood to early adulthood predicted the reduction of ADHD symptoms as a function of allelic variation in DRD1 and DRD2. Participants were 76 7–11-year-old children with ADHD who were genotyped and prospectively followed for almost 10 years. ADHD symptoms were rated using the Attention Problems scale on the Child Behavior Checklist, and verbal working memory maintenance and manipulation, measured by Digit Span forward and backward, respectively, were assessed at baseline and follow-up. After correction for multiple testing, improvements in working memory manipulation, not maintenance, predicted reduction of symptomatology over development and was moderated by major allele homozygosity in two DRD1 polymorphisms (rs4532 and rs265978) previously linked with variation in D1 receptor expression. Depending on genetic background, developmental factors including age-dependent variation in DRD1 penetrance may facilitate the link between improvements in higher-order working memory and the remission of symptoms in individuals with childhood-diagnosed ADHD. Furthermore, the current findings suggest that DRD1 might contribute minimally to the emergence of symptoms and cognitive difficulties associated with ADHD in childhood, but may act as a modifier gene of these clinical features and outcome during later development for those with ADHD.
PMCID: PMC4069210  PMID: 24410775
10.  ELK1 transcription factor linked to dysregulated striatal mu opioid receptor signaling network and OPRM1 polymorphism in human heroin abusers 
Biological psychiatry  2013;74(7):511-519.
Abuse of heroin and prescription opiate medications has grown to disturbing levels. Opioids mediate their effects through mu opioid receptors (MOR), but minimal information exists regarding MOR-related striatal signaling relevant to the human condition. The striatum is a structure central to reward and habitual behavior and neurobiological changes in this region are thought to underlie the pathophysiology of addiction disorders.
We examined molecular mechanisms related to MOR in postmortem human brain striatal specimens from a homogenous European Caucasian population of heroin abusers and control subjects and in an animal model of heroin self-administration. Expression of ets-like kinase 1 (ELK1) was examined in relation to polymorphism of the MOR gene OPRM1 and drug history.
A characteristic feature of heroin abusers was decreased expression of MOR and extracellular regulated kinase (ERK) signaling networks, concomitant with dysregulation of the downstream transcription factor ELK1. Striatal ELK1 in heroin abusers associated with the polymorphism rs2075572 in OPRM1 in a genotype dose-dependent manner and correlated with documented history of heroin use, an effect reproduced in an animal model that emphasizes a direct relationship between repeated heroin exposure and ELK1 dysregulation. A central role of ELK1 was evidenced by an unbiased whole transcriptome microarray that revealed ~20% of downregulated genes in human heroin abusers are ELK1 targets. Using chromatin immuneprecipitation, we confirmed decreased ELK1 promoter occupancy of the target gene Use1.
ELK1 is a potential key transcriptional regulatory factor in striatal disturbances associated with heroin abuse and relevant to genetic mutation of OPRM1.
PMCID: PMC4070524  PMID: 23702428
opioid; self-administration; MAPK; transcriptome; addiction; rat
11.  Limbic Activation to Novel versus Familiar Food cues Predicts Food Preference and Alcohol Intake 
Brain research  2013;1512:37-44.
Expectation of salient rewards and novelty seeking are processes implicated in substance use disorders but the neurobiological substrates underlying these associations are not well understood. To better understand the regional circuitry of novelty and reward preference, rats were conditioned to pair unique cues with bacon, an initially novel food, or chow, a familiar food. In the same animals, after training, cue-induced brain activity was measured, and the relationships between activity and preference for three rewards, the conditioned foods and ethanol (EtOH), were separately determined. Activity in response to the food paired-cues was measured using brain glucose metabolism (BGluM). Rats favoring bacon-paired (BAP) cues had increased BGluM in mesocorticolimbic brain regions after exposure to these cues, while rats favoring chow-paired (CHP) cues showed relative deactivation in these regions. Rats exhibiting BAP cue-induced activation in prefrontal cortex (PFC) also consumed more EtOH while rats with cortical activation in response to CHP cues showed lower EtOH consumption. Additionally, long-term stable expression levels of PFC Grin2a, a subunit of the NMDA receptor, correlated with individual differences in EtOH preference insomuch that rats with high EtOH preference had enduringly low PFC Grin2a mRNA expression. No other glutamatergic, dopaminergic or endocannabinoid genes studied showed this relationship. Overall, these results suggest that natural variation in mesocorticolimbic sensitivity to reward-paired cues underlies behavioral preferences for and vulnerability to alcohol abuse, and support the notion of common neuronal circuits involved in food- and drug-seeking behavior. The findings also provide evidence that PFC NMDA-mediated glutamate signaling may modulate these associations.
PMCID: PMC3654647  PMID: 23506787
behavioral imaging; positron emission tomography; neuroimaging; craving; reward; rat
12.  ΔFosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli 
The Journal of Neuroscience  2013;33(47):18381-18395.
The transcription factor, ΔFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse, antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of ΔFosB induction in the two striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of ΔFosB in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, Δ(9)-tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic exposure to many stimuli induces ΔFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated induction of ΔFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral hippocampus. These optogenetic conditions lead to highly distinct patterns of ΔFosB induction in MSN subtypes in NAc core and shell. Together, these findings establish selective patterns of ΔFosB induction in striatal MSN subtypes in response to chronic stimuli and provide novel insight into the circuit-level mechanisms of ΔFosB induction in striatum.
PMCID: PMC3834048  PMID: 24259563
13.  Food for Thought: Hormonal, Experiential, and Neural Influences on Feeding and Obesity 
The Journal of Neuroscience  2013;33(45):17610-17616.
Obesity is a growing public health problem. Although convenient, the notion that obesity is simply a problem of will power is increasingly antiquated. It is becoming clear that complex interactions of environment, neurohormonal systems, and transgenerational effects directly contribute to obesity. This review highlights data presented at the Society for Neuroscience Annual Meeting in San Diego, California in 2013; and although not meant as an exhaustive review of the area, this reivew will explore seemingly disparate areas of research that, when taken as a whole, illuminate the complex topography of the causes and consequences of obesity. We discuss how disruption of the biological clock, a consequence of modern society, can lead to changes in the brain and periphery that lead to obesity. We explore how obesity can actually cause pathological changes within the hypothalamus of the brain (a key regulator of food intake and metabolic homeostasis). How reward circuitry, particularly the ventral tegmental area, responds to insulin and how these effects modulate feeding and the salience of feeding cues are mechanistically described. We also investigate how nutrition may cross generational boundaries to affect the development and function of offspring, underscoring the long reach of metabolic effects. Finally, the role of the endocannabinoid system is emphasized as a critical node in the transduction of many of these effects. Together, this review should provide perspective into the neural causes and consequences of obesity, and hopefully lead to new areas of interdisciplinary research to tackle this important public health epidemic.
PMCID: PMC3818543  PMID: 24198352
14.  Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine 
Analytical and bioanalytical chemistry  2013;405(14):4679-4689.
A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex—a cannabis plant extract containing 1:1 Δ9-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x2 weighting with linear ranges (r2>0.990) of 2.5–100 ng/mL for non-hydrolyzed CBD and 2.5–500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7–105.3 %, imprecision 1.4–6.4 % CV and extraction efficiency 82.5–92.7 % (no hydrolysis) and 34.3–47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration.
PMCID: PMC3703206  PMID: 23494274
Cannabidiol; Cannabidiol-glucuronide; Enzymatic hydrolysis; Urine; GC-MS
Biological psychiatry  2012;72(10):803-810.
Marijuana use by teenagers often predates the use of harder drugs, but the neurobiological underpinnings of such vulnerability are unknown. Animal studies suggest enhanced heroin self-administration (SA) and dysregulation of the endogenous opioid system in the nucleus accumbens shell (NAcsh) of adults following adolescent Δ9-tetrahydrocannabinol (THC) exposure. However, a causal link between Penk expression and vulnerability to heroin has yet to be established.
To investigate the functional significance of NAcsh Penk tone, selective viral-mediated knockdown and overexpression of Penk was performed, followed by analysis of subsequent heroin SA behavior. To determine whether adolescent THC exposure was associated with chromatin alteration, we analyzed levels of histone H3 methylation in the NAcsh via ChIP at five sites flanking the Penk gene transcription start site.
Here, we show that regulation of the proenkephalin (Penk) opioid neuropeptide gene in NAcsh directly regulates heroin SA behavior. Selective viral-mediated knockdown of Penk in striatopallidal neurons attenuates heroin SA in adolescent THC-exposed rats, whereas Penk overexpression potentiates heroin SA in THC-naïve rats. Furthermore, we report that adolescent THC exposure mediates Penk upregulation through reduction of histone H3 lysine 9 (H3K9) methylation in the NAcsh, thereby disrupting the normal developmental pattern of H3K9 methylation.
These data establish a direct association between THC-induced NAcsh Penk upregulation and heroin SA and indicate that epigenetic dysregulation of Penk underlies the long-term effects of THC.
PMCID: PMC3440551  PMID: 22683090
drug addiction; marijuana; rat; nucleus accumbens; striatopallidal; epigenetics
16.  Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression 
The Journal of Clinical Investigation  2013;123(12):5334-5341.
Negative affect is critical for conferring vulnerability to opiate addiction as reflected by the high comorbidity of opiate abuse with major depressive disorder (MDD). Rodent models implicate amygdala prodynorphin (Pdyn) as a mediator of negative affect; however, evidence of PDYN involvement in human negative affect is limited. Here, we found reduced PDYN mRNA expression in the postmortem human amygdala nucleus of the periamygdaloid cortex (PAC) in both heroin abusers and MDD subjects. Similar to humans, rats that chronically self-administered heroin had reduced Pdyn mRNA expression in the PAC at a time point associated with a negative affective state. Using the in vivo functional imaging technology DREAMM (DREADD-assisted metabolic mapping, where DREADD indicates designer receptors exclusively activated by designer drugs), we found that selective inhibition of Pdyn-expressing neurons in the rat PAC increased metabolic activity in the extended amygdala, which is a key substrate of the extrahypothalamic brain stress system. In parallel, PAC-specific Pdyn inhibition provoked negative affect–related physiological and behavioral changes. Altogether, our translational study supports a functional role for impaired Pdyn in the PAC in opiate abuse through activation of the stress and negative affect neurocircuitry implicated in addiction vulnerability.
PMCID: PMC3859405  PMID: 24231353
17.  Dopamine receptor D1 and post-synaptic density gene variants associate with opiate abuse and striatal expression levels 
Molecular psychiatry  2012;18(11):10.1038/mp.2012.140.
Opioid drugs are highly addictive and their abuse has a strong genetic load. Dopamine-glutamate interactions are hypothesized to be important for regulating neural systems central for addiction vulnerability. Balanced dopamine-glutamate interaction is mediated through several functional associations, including a physical link between discs, large homolog 4 (Drosophila) (DLG4, PSD-95) and dopamine receptor 1 (DRD1) within the postsynaptic density to regulate DRD1 trafficking. To address whether genetic associations with heroin abuse exist in relation to dopamine and glutamate and their potential interactions, we evaluated single nucleotide polymorphisms of key genes within these systems in three populations of opiate abusers and controls, totaling 489 individuals from Europe and the USA. Despite significant differences in racial makeup of the separate samples, polymorphisms of DRD1 and DLG4 were found to be associated with opiate abuse. In addition, a strong gene-gene interaction between homer 1 homolog (Drosophila) (HOMER1) and DRD1 was predicted to occur in Caucasian subjects. This interaction was further analyzed by evaluating DRD1 genotype in relation to HOMER1b/c protein expression in postmortem tissue from a subset of Caucasian subjects. DRD1 rs265973 genotype correlated with HOMER1b/c levels in the striatum, but not cortex or amgydala; the correlation was inversed in opiate abusers as compared to controls. Cumulatively, these results support the hypothesis that there may be significant, genetically-influenced interactions between glutamatergic and dopaminergic pathways in opiate abusers.
PMCID: PMC3637428  PMID: 23044706
addiction; heroin; epistasis; post mortem; striatum; plasticity; glutamate
18.  Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites 
Nucleic Acids Research  2013;42(1):109-127.
We applied Illumina Human Methylation450K array to perform a genomic-scale single-site resolution DNA methylation analysis in neuronal and nonneuronal (primarily glial) nuclei separated from the orbitofrontal cortex of postmortem human brain. The findings were validated using enhanced reduced representation bisulfite sequencing. We identified thousands of sites differentially methylated (DM) between neuronal and nonneuronal cells. The DM sites were depleted within CpG-island–containing promoters but enriched in predicted enhancers. Classification of the DM sites into those undermethylated in neurons (neuronal type) and those undermethylated in nonneuronal cells (glial type), combined with findings of others that methylation within control elements typically negatively correlates with gene expression, yielded large sets of predicted neuron-specific and non–neuron-specific genes. These sets of predicted genes were in excellent agreement with the available direct measurements of gene expression in human and mouse. We also found a distinct set of DNA methylation patterns that were unique for neuronal cells. In particular, neuronal-type differential methylation was overrepresented in CpG island shores, enriched within gene bodies but not in intergenic regions, and preferentially harbored binding motifs for a distinct set of transcription factors, including neuron-specific activity-dependent factors. Finally, non-CpG methylation was substantially more prevalent in neurons than in nonneuronal cells.
PMCID: PMC3874157  PMID: 24057217
19.  Diacylglycerol lipase α manipulation reveals developmental roles for intercellular endocannabinoid signaling 
Scientific Reports  2013;3:2093.
Endocannabinoids are small signaling lipids, with 2-arachidonoylglycerol (2-AG) implicated in modulating axonal growth and synaptic plasticity. The concept of short-range extracellular signaling by endocannabinoids is supported by the lack of trans-synaptic 2-AG signaling in mice lacking sn-1-diacylglycerol lipases (DAGLs), synthesizing 2-AG. Nevertheless, how far endocannabinoids can spread extracellularly to evoke physiological responses at CB1 cannabinoid receptors (CB1Rs) remains poorly understood. Here, we first show that cholinergic innervation of CA1 pyramidal cells of the hippocampus is sensitive to the genetic disruption of 2-AG signaling in DAGLα null mice. Next, we exploit a hybrid COS-7-cholinergic neuron co-culture system to demonstrate that heterologous DAGLα overexpression spherically excludes cholinergic growth cones from 2-AG-rich extracellular environments, and minimizes cell-cell contact in vitro. CB1R-mediated exclusion responses lasted 3 days, indicating sustained spherical 2-AG availability. Overall, these data suggest that extracellular 2-AG concentrations can be sufficient to activate CB1Rs along discrete spherical boundaries to modulate neuronal responsiveness.
PMCID: PMC3695556  PMID: 23806960
20.  Molecular mechanisms of maternal cannabis and cigarette use on human neurodevelopment 
The European journal of neuroscience  2011;34(10):1574-1583.
Prenatal development is highly sensitive to maternal drug use due to the vulnerability for disruption of the fetal brain where the ongoing neurodevelopmental, resulting in lifelong consequences that can enhance risk for psychiatric disorders. Cannabis and cigarettes are the most commonly used illicit and licit substances, respectively, among pregnant women. While the behavioral consequences of prenatal cannabis and cigarette exposure have been well-documented in epidemiological and clinical studies, only recently have investigations into the molecular mechanisms associated with the developmental impact of early drug exposure been addressed. This article reviews the literature relevant to long-term gene expression disturbances in the human fetal brain in relation to maternal cannabis and cigarette use. To provide translational insights, we discuss animal models in which protracted molecular consequences of prenatal cannabis and cigarette exposure can be better explored and enable future evaluation of epigenetic pathways such as DNA methylation and histone modification that could potentially maintain abnormal gene regulation and related behavioral disturbances. Altogether, this information may help to address the current gaps of knowledge regarding the impact of early drug exposure that set in motion lifelong molecular disturbances that underlie vulnerability to psychiatric disorders.
PMCID: PMC3226730  PMID: 22103415
Prenatal; fetal; marijuana; nicotine; epigenetics
21.  Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring 
Biological psychiatry  2011;70(8):763-769.
Prenatal cannabis exposure has been linked to addiction vulnerability, but the neurobiology underlying this risk is unknown.
Striatal dopamine and opioid-related genes were studied in human fetal subjects exposed to cannabis (as well as cigarettes and alcohol). Cannabis-related gene disturbances observed in the human fetus were subsequently characterized using an animal model of prenatal delta-9-tetrahydrocannabinol (THC; 0.15 mg/kg) exposure.
Prenatal cannabis exposure decreased dopamine receptor D2 (DRD2) mRNA expression in the human ventral striatum (nucleus accumbens; NAc), a key brain reward region. No significant alterations were observed for the other genes in cannabis-exposed subjects. Maternal cigarette use was associated with reduced NAc prodynorphin mRNA expression and alcohol exposure induced broad alterations primarily in the dorsal striatum of most genes. To explore the mechanisms underlying the cannabis-associated disturbances, we exposed pregnant rats to THC and examined the epigenetic regulation of the NAc Drd2 gene in their offspring at postnatal day 2, comparable to the human fetal period studied, and in adulthood. Chromatin immunoprecipitation of the adult NAc revealed increased 2meH3K9 repressive mark and decreased 3meH3K4 and RNA polymerase II at the Drd2 gene locus in the THC-exposed offspring. Decreased Drd2 expression was accompanied by reduced D2R binding sites and increased sensitivity to opiate reward in adulthood.
These data suggest that maternal cannabis use alters developmental regulation of mesolimbic D2R in offspring through epigenetic mechanisms that regulate histone lysine methylation, and the ensuing reduction of D2R may contribute to addiction vulnerability later in life.
PMCID: PMC3186868  PMID: 21820648
THC; addiction; development; enkephalin; dynorphin; D1 receptor
22.  Cannabis-Dependence Risk Relates to Synergism between Neuroticism and Proenkephalin SNPs Associated with Amygdala Gene Expression: Case-Control Study 
PLoS ONE  2012;7(6):e39243.
Many young people experiment with cannabis, yet only a subgroup progress to dependence suggesting individual differences that could relate to factors such as genetics and behavioral traits. Dopamine receptor D2 (DRD2) and proenkephalin (PENK) genes have been implicated in animal studies with cannabis exposure. Whether polymorphisms of these genes are associated with cannabis dependence and related behavioral traits is unknown.
Methodology/Principal Findings
Healthy young adults (18–27 years) with cannabis dependence and without a dependence diagnosis were studied (N = 50/group) in relation to a priori-determined single nucleotide polymorphisms (SNPs) of the DRD2 and PENK genes. Negative affect, Impulsive Risk Taking and Neuroticism-Anxiety temperamental traits, positive and negative reward-learning performance and stop-signal reaction times were examined. The findings replicated the known association between the rs6277 DRD2 SNP and decisions associated with negative reinforcement outcomes. Moreover, PENK variants (rs2576573 and rs2609997) significantly related to Neuroticism and cannabis dependence. Cigarette smoking is common in cannabis users, but it was not associated to PENK SNPs as also validated in another cohort (N = 247 smokers, N = 312 non-smokers). Neuroticism mediated (15.3%–19.5%) the genetic risk to cannabis dependence and interacted with risk SNPs, resulting in a 9-fold increase risk for cannabis dependence. Molecular characterization of the postmortem human brain in a different population revealed an association between PENK SNPs and PENK mRNA expression in the central amygdala nucleus emphasizing the functional relevance of the SNPs in a brain region strongly linked to negative affect.
Overall, the findings suggest an important role for Neuroticism as an endophenotype linking PENK polymorphisms to cannabis-dependence vulnerability synergistically amplifying the apparent genetic risk.
PMCID: PMC3382183  PMID: 22745721
23.  Dysregulated post-synaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers 
Biological psychiatry  2010;69(3):245-252.
Glutamatergic transmission in the amygdala is hypothesized as an important mediator of stimulus-reward associations contributing to drug-seeking behavior and relapse. Insight is, however, lacking regarding the amygdala glutamatergic system in human drug abusers.
We examined glutamate receptors and scaffolding proteins associated with the post-synaptic density (PSD) of excitatory synapses in the human post-mortem amygdala. mRNA or protein levels were studied in a multi-drug (7 heroin, 8 cocaine, 7 heroin/cocaine and 7 control) or predominant heroin (29 heroin and 15 control) population of subjects.
The amygdala of drug abusers was characterized by a striking positive correlation (r > 0.8) between AMPA GluA1 and post-synaptic protein-95 (PSD-95) mRNA levels, which was not evident in controls. Structural equation multi-group analysis of protein correlations also identified the relationship between GluA1 and PSD-95 protein levels as the distinguishing feature of abusers. In line with the GluA1—PSD-95 implications of enhanced synaptic plasticity, Homer 1b/c protein expression was significantly increased in both heroin and cocaine users as was its binding partner dynamin-3, localized to the endocytic zone. Furthermore, there was a positive relationship between Homer 1b/c and dynamin-3 in drug abusers that reflected an increase in the direct physical coupling between the proteins. A noted age-related decline of Homer 1b/c—dynamin-3 interactions, as well as GluA1 levels, was blunted in abusers.
Impairment of key components of the amygdala PSD and coupling to the endocytic zone, critical for the regulation of glutamate receptor cycling, may underlie heightened synaptic plasticity in human drug abusers.
PMCID: PMC3017476  PMID: 21126734
addiction; PSD-95; dynamin-3; post mortem; synaptic plasticity; glutamate
24.  Secretagogin is a Ca2+-binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon 
The European journal of neuroscience  2010;31(12):2166-2177.
The Ca2+-binding proteins (CBPs) calbindin D28k, calretinin and parvalbumin are phenotypic markers of functionally diverse subclasses of neurons in the adult brain. The developmental dynamics of CBP expression are precisely timed: calbindin and calretinin are present in prospective cortical interneurons from mid-gestation, while parvalbumin only becomes expressed during the early postnatal period in rodents. Secretagogin (scgn) is a CBP cloned from pancreatic β and neuroendocrine cells. We hypothesized that scgn may be expressed by particular neuronal contingents during prenatal development of the mammalian telencephalon. We find that scgn is expressed in neurons transiting in the subpallial differentiation zone by embryonic day (E) 11 in mouse. From E12, scgn+ cells commute towards the extended amygdala and colonize the bed nucleus of stria terminalis, interstitial nucleus of the posterior limb of the anterior commissure, dorsal substantia innominata (SI), and the central and medial amygdaloid nuclei. Scgn+ neurons can acquire a cholinergic phenotype in the SI or differentiate into GABA cells in the central amygdala. We also uncover phylogenetic differences in scgn expression since this CBP defines not only neurons destined to the extended amygdala but also cholinergic projection cells and cortical pyramidal cells in the fetal non-human primate and human brains, respectively. Overall, our findings emphasize the developmentally shared origins of neurons populating the extended amygdala, and suggest that secretagogin can be relevant to the generation of functional modalities in specific neuronal circuitries.
PMCID: PMC2917754  PMID: 20529129
Ca2+-binding protein; extended amygdala; forebrain; mouse; primate
25.  Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens 
Nature neuroscience  2010;13(9):1137-1143.
Despite abundant expression of DNA methyltransferases (Dnmt’s) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We find that Dnmt3a expression is regulated in mouse nucleus accumbens (NAc) by chronic cocaine and chronic social defeat stress. Moreover, NAc specific manipulations that block DNA methylation potentiate cocaine reward and exert antidepressant-like effects, whereas NAc specific Dnmt3a overexpression attenuates cocaine reward and is pro-depressant. On a cellular level, we show that chronic cocaine selectively increases thin dendritic spines on NAc neurons and that DNA methylation is both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.
PMCID: PMC2928863  PMID: 20729844

Results 1-25 (30)