PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genome-Wide Quantitative Trait Locus Mapping Identifies Multiple Major Loci for Brittle Rachis and Threshability in Tibetan Semi-Wild Wheat (Triticum aestivum ssp. tibetanum Shao) 
PLoS ONE  2014;9(12):e114066.
Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is a semi-wild hexaploid wheat resource that is only naturally distributed in the Qinghai-Tibet Plateau. Brittle rachis and hard threshing are two important characters of Tibetan semi-wild wheat. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed using a recombinant inbred line population (Q1028×ZM9023) with 186 lines, 564 diversity array technology markers, and 117 simple sequence repeat markers. Phenotypic data on brittle rachis and threshability, as two quantitative traits, were evaluated on the basis of the number of average spike rachis fragments per spike and percent threshability in 2012 and 2013, respectively. Quantitative trait locus (QTL) mapping performed using inclusive composite interval mapping analysis clearly identified four QTLs for brittle rachis and three QTLs for threshability. However, three loci on 2DS, 2DL, and 5AL showed pleiotropism for brittle rachis and threshability; they respectively explained 5.3%, 18.6%, and 18.6% of phenotypic variation for brittle rachis and 17.4%, 13.2%, and 35.2% of phenotypic variation for threshability. A locus on 3DS showed an independent effect on brittle rachis, which explained 38.7% of the phenotypic variation. The loci on 2DS and 3DS probably represented the effect of Tg and Br1, respectively. The locus on 5AL was in very close proximity to the Q gene, but was different from the predicted q in Tibetan semi-wild wheat. To our knowledge, the locus on 2DL has never been reported in common wheat but was prominent in T. aestivum ssp. tibetanum accession Q1028. It remarkably interacted with the locus on 5AL to affect brittle rachis. Several major loci for brittle rachis and threshability were identified in Tibetan semi-wild wheat, improving the understanding of these two characters and suggesting the occurrence of special evolution in Tibetan semi-wild wheat.
doi:10.1371/journal.pone.0114066
PMCID: PMC4256410  PMID: 25474652
2.  Transcriptome and Allele Specificity Associated with a 3BL Locus for Fusarium Crown Rot Resistance in Bread Wheat 
PLoS ONE  2014;9(11):e113309.
Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL.
doi:10.1371/journal.pone.0113309
PMCID: PMC4236173  PMID: 25405461
3.  Extensive Pericentric Rearrangements in the Bread Wheat (Triticum aestivum L.) Genotype “Chinese Spring” Revealed from Chromosome Shotgun Sequence Data 
Genome Biology and Evolution  2014;6(11):3039-3048.
The bread wheat (Triticum aestivum L.) genotype “Chinese Spring” (“CS”) is the reference base in wheat genetics and genomics. Pericentric rearrangements in this genotype were systematically assessed by analyzing homoeoloci for a set of nonredundant genes from Brachypodium distachyon, Triticum urartu, and Aegilops tauschii in the CS chromosome shotgun sequence obtained from individual chromosome arms flow-sorted from CS aneuploid lines. Based on patterns of their homoeologous arm locations, 551 genes indicated the presence of pericentric inversions in at least 10 of the 21 chromosomes. Available data from deletion bin-mapped expressed sequence tags and genetic mapping in wheat indicated that all inversions had breakpoints in the low-recombinant gene-poor pericentromeric regions. The large number of putative intrachromosomal rearrangements suggests the presence of extensive structural differences among the three subgenomes, at least some of which likely occurred during the production of the aneuploid lines of this hexaploid wheat genotype. These differences could have significant implications in wheat genome research where comparative approaches are used such as in ordering and orientating sequence contigs and in gene cloning.
doi:10.1093/gbe/evu237
PMCID: PMC4255769  PMID: 25349265
chromosomal rearrangement; comparative genomics; pericentric inversion; pericentromeric regions; translocation; Chinese Spring
4.  The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley 
BMC Plant Biology  2014;14:22.
Background
Studies in Arabidopsis show that DELLA genes may differentially affect responses to biotrophic and necrophic pathogens. A recent report based on the study of DELLA-producing reduced height (Rht) genes in wheat and barley also hypothesized that DELLA genes likely increased susceptibility to necrotrophs but increased resistance to biotrophs.
Results
Effects of uzu, a non-GA (gibberellic acid)-responsive semi-dwarfing gene, on Fusarium crown rot (FCR) resistance in barley were investigated. Fifteen pairs of near isogenic lines for this gene were generated and assessed under two different temperature regimes. Similar to its impacts on plant height, the semi-dwarfing gene uzu also showed larger effects on FCR severity in the high temperature regime when compared with that in the low temperature regime.
Conclusions
Results from this study add to the growing evidence showing that the effects of plant height on Fusarium resistances are unlikely related to DELLA genes but due to direct or indirect effects of height difference per se. The interaction between these two characteristics highlights the importance of understanding relationships between resistance and other traits of agronomic importance as the value of a resistance gene could be compromised if it dramatically affects plant development and morphology.
doi:10.1186/1471-2229-14-22
PMCID: PMC3898025  PMID: 24418007
Plant height; Fusarium crown rot; uzu gene; Near isogenic lines; DELLA proteins
5.  Sequence-Based Analysis of Translocations and Inversions in Bread Wheat (Triticum aestivum L.) 
PLoS ONE  2013;8(11):e79329.
Structural changes of chromosomes are a primary mechanism of genome rearrangement over the course of evolution and detailed knowledge of such changes in a given species and its close relatives should increase the efficiency and precision of chromosome engineering in crop improvement. We have identified sequences bordering each of the main translocation and inversion breakpoints on chromosomes 4A, 5A and 7B of the modern bread wheat genome. The locations of these breakpoints allow, for the first time, a detailed description of the evolutionary origins of these chromosomes at the gene level. Results from this study also demonstrate that, although the strategy of exploiting sorted chromosome arms has dramatically simplified the efforts of wheat genome sequencing, simultaneous analysis of sequences from homoeologous and non-homoeologous chromosomes is essential in understanding the origins of DNA sequences in polyploid species.
doi:10.1371/journal.pone.0079329
PMCID: PMC3829836  PMID: 24260197
6.  Characterization of x-type high-molecular-weight glutenin promoters (x-HGP) from different genomes in Triticeae 
SpringerPlus  2013;2:152.
The sequences of x-type high-molecular-weight glutenin promoter (x-HGP) from 21 diploid Triticeae species were cloned and sequenced. The lengths of x-HGP varied from 897 to 955 bp, and there are 329 variable sites including 105 singleton sites and 224 polymorphic sites. Genetic distances of pairwise X-HGP sequences ranged from 0.30 to 16.40% within 21 species and four outgroup species of Hordeum. All five recognized regulatory elements emerged and showed higher conservation in the x-HGP of 21 Triticeae species. Most variations were distributed in the regions among or between regulatory elements. A 22 bp and 50 bp insertions which were the copy of adjacent region with minor change, were found in the x-HGP of Ae. speltoides and Ps. Huashanica, and could be regarded as genome specific indels. The phylogeny of media-joining network and neighbour-joining tree both supported the topology were composed of three sperate clusters. Especially, the cluster I comprising the x-HGP sequences of Aegilops, Triticum, Henrardia, Agropyron and Taeniatherum was highly supporting by both network and NJ tree. As conferring to higher level and temporal and spatial expression, x-HGP can used as the source of promoter for constructing transgenic plants which allow endosperm-specific expression of exogenous gene on higher level. In addition, the x-HGP has enough conservation and variation; so it should be valuable in phylogenetic analyses of Triticeae family members.
doi:10.1186/2193-1801-2-152
PMCID: PMC3655216  PMID: 23687628
Evolution analysis; Regulatory element; Triticeae; x-type high-molecular-weight glutenin promoter (x-HGP)
7.  A Novel and Major Quantitative Trait Locus for Fusarium Crown Rot Resistance in a Genotype of Wild Barley (Hordeum spontaneum L.) 
PLoS ONE  2013;8(3):e58040.
Fusarium crown rot (FCR), caused by various Fusarium species, is a destructive disease of cereal crops in semiarid regions worldwide. As part of our contribution to the development of Fusarium resistant cultivars, we identified several novel sources of resistance by systematically assessing barley genotypes representing different geographical origins and plant types. One of these sources of resistance was investigated in this study by generating and analysing two populations of recombinant inbred lines. A major locus conferring FCR resistance, designated as Qcrs.cpi-4H, was detected in one of the populations (mapping population) and the effects of the QTL was confirmed in the other population. The QTL was mapped to the distal end of chromosome arm 4HL and it is effective against both of the Fusarium isolates tested, one F. pseudograminearum and the other F. graminearum. The QTL explains up to 45.3% of the phenotypic variance. As distinct from an earlier report which demonstrated co-locations of loci conferring FCR resistance and plant height in barley, a correlation between these two traits was not detected in the mapping population. However, as observed in a screen of random genotypes, an association between FCR resistance and plant growth rate was detected and a QTL controlling the latter was detected near the Qcrs.cpi-4H locus in the mapping population. Existing data indicate that, although growth rate may affect FCR resistance, different genes at this locus are likely involved in controlling these two traits.
doi:10.1371/journal.pone.0058040
PMCID: PMC3594225  PMID: 23536780
8.  Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome 
BMC Genetics  2012;13:69.
Background
A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population.
Results
Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B.
Conclusions
A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.
doi:10.1186/1471-2156-13-69
PMCID: PMC3470960  PMID: 22888829
Allopolyploid; Crossability; Doubled haploid; Segregation distortion
9.  Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding 
BMC Plant Biology  2012;12:73.
Background
High molecular weight glutenin subunits (HMW-GSs), encoded by the genes at Glu-1 loci in wheat and its related species, are significant in the determination of grain processing quality. However, the diversity and variations of HMW-GSs are relatively low in bread wheat. More interests are now focused on wheat wild relatives in Triticeae. The genus Aegilops represents an important germplasm for novel HWM-GSs and other useful genes for wheat genetic improvement.
Results
Six novel Glu-1 alleles and HMW-GSs were identified and characterized from three species of Aegilops section Sitopsis (S genome). Both open reading frames (ORFs) and promoter regions of these Glu-1 alleles were sequenced and characterized. The ORFs of Sitopsis Glu-1 genes are approximately 2.9 kb and 2.3 kb for x-type and y-type subunits, respectively. Although the primary structures of Sitopsis HMW-GSs are similar to those of previously reported ones, all six x-type or y-type subunits have the large fragment insertions. Our comparative analyses of the deduced amino acid sequences verified that Aegilops section Sitopsis species encode novel HMW-GSs with their molecular weights larger than almost all other known HMW-GSs. The Glu-1 promoter sequences share the high homology among S genome. Our phylogenetic analyses by both network and NJ tree indicated that there is a close phylogenetic evolutionary relationship of x-type and y-type subunit between S and D genome.
Conclusions
The large molecular weight of HMW-GSs from S genome is a unique feature identified in this study. Such large subunits are resulted from the duplications of repetitive domains in Sitopsis HMW-GSs. The unequal crossover events are the most likely mechanism of variations in glutenin subunits. The S genome-encoded subunits, 1Dx2.2 and 1Dx2.2* have independent origins, although they share similar evolutionary mechanism. As HMW-GSs play a key role in wheat baking quality, these large Sitopsis glutenin subunits can be used as special genetic resources for wheat quality improvement.
doi:10.1186/1471-2229-12-73
PMCID: PMC3441382  PMID: 22646663
10.  Evolutionary Dynamics of the Pgk1 Gene in the Polyploid Genus Kengyilia (Triticeae: Poaceae) and Its Diploid Relatives 
PLoS ONE  2012;7(2):e31122.
The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2) a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3) sweep event and population expansion might result in the difference in the dN/dS value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4) an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5) the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.
doi:10.1371/journal.pone.0031122
PMCID: PMC3282717  PMID: 22363562
11.  The impact of single nucleotide polymorphism in monomeric alpha-amylase inhibitor genes from wild emmer wheat, primarily from Israel and Golan 
Background
Various enzyme inhibitors act on key insect gut digestive hydrolases, including alpha-amylases and proteinases. Alpha-amylase inhibitors have been widely investigated for their possible use in strengthening a plant's defense against insects that are highly dependent on starch as an energy source. We attempted to unravel the diversity of monomeric alpha-amylase inhibitor genes of Israeli and Golan Heights' wild emmer wheat with different ecological factors (e.g., geography, water, and temperature). Population methods that analyze the nature and frequency of allele diversity within a species and the codon analysis method (comparing patterns of synonymous and non-synonymous changes in protein coding sequences) were used to detect natural selection.
Results
Three hundred and forty-eight sequences encoding monomeric alpha-amylase inhibitors (WMAI) were obtained from 14 populations of wild emmer wheat. The frequency of SNPs in WMAI genes was 1 out of 16.3 bases, where 28 SNPs were detected in the coding sequence. The results of purifying and the positive selection hypothesis (p < 0.05) showed that the sequences of WMAI were contributed by both natural selection and co-evolution, which ensured conservation of protein function and inhibition against diverse insect amylases. The majority of amino acid substitutions occurred at the C-terminal (positive selection domain), which ensured the stability of WMAI. SNPs in this gene could be classified into several categories associated with water, temperature, and geographic factors, respectively.
Conclusions
Great diversity at the WMAI locus, both between and within populations, was detected in the populations of wild emmer wheat. It was revealed that WMAI were naturally selected for across populations by a ratio of dN/dS as expected. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs. A sharp genetic divergence over very short geographic distances compared to a small genetic divergence between large geographic distances also suggested that the SNPs were subjected to natural selection, and ecological factors had an important evolutionary role in polymorphisms at this locus. According to population and codon analysis, these results suggested that monomeric alpha-amylase inhibitors are adaptively selected under different environmental conditions.
doi:10.1186/1471-2148-10-170
PMCID: PMC2898687  PMID: 20534122
12.  Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase 
Background
Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Leymus is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of Leymus was assigned as NsXm, where Ns was presumed to be originated from Psathyrostachys, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of Leymus. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of Leymus based on a single-copy nuclear Acc1 gene.
Results
Two homoeologues of the Acc1 gene were isolated from nearly all the sampled Leymus species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Leymus is closely related to Psathyrostachys, Agropyron, and Eremopyrum; (2) Psathyrostachys juncea is an ancestral Ns-genome donor of Leymus species; (3) the Xm genome in Leymus may be originated from an ancestral lineage of Agropyron and Eremopyrum triticeum; (4) the Acc1 sequences of Leymus species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5) North America Leymus species might originate from colonization via the Bering land bridge; (6) Leymus originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in Leymus during the period of 3.7-4.3 MYA and 1.7-2.1 MYA.
Conclusion
Leymus species have allopolyploid origin. It is hypothesized that the adaptive radiation of Leymus species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in Leymus. Our results shed new light on our understanding of the origin of Xm genome, the polyploidization events and evolutionary history of Leymus that could account for the rich diversity and ecological adaptation of Leymus species.
doi:10.1186/1471-2148-9-247
PMCID: PMC2770499  PMID: 19814813
13.  The γ-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species 
BMC Genomics  2009;10:168.
Background
The unique properties of wheat flour primarily depend on gluten, which is the most important source of protein for human being. γ-Gliadins have been considered to be the most ancient of the wheat gluten family. The complex family structure of γ-gliadins complicates the determination of their function. Moreover, γ-gliadins contain several sets of celiac disease epitopes. However, no systematic research has been conducted yet.
Results
A total of 170 γ-gliadin genes were isolated from common wheat and its closely related species, among which 138 sequences are putatively functional. The ORF lengths of these sequences range from 678 to 1089 bp, and the repetitive region is mainly responsible for the size heterogeneity of γ-gliadins. The repeat motif P(Q/L/S/T/I/V/R/A)F(S/Y/V/Q/I/C/L)P(R/L/S/T/H/C/Y)Q1–2(P(S/L/T/A/F/H)QQ)1–2is repeated from 7 to 22 times. Sequence polymorphism and linkage disequilibrium analyses show that γ-gliadins are highly diverse. Phylogenic analyses indicate that there is no obvious discrimination between Sitopsis and Ae. tauschii at the Gli-1 loci, compared with diploid wheat. According to the number and placement of cysteine residues, we defined nine cysteine patterns and 17 subgroups. Alternatively, we classified γ-gliadins into two types based on the length of repetitive domain. Amino acid composition analyses indicate that there is a wide range of essential amino acids in γ-gliadins, and those γ-gliadins from subgroup SG-10 and SG-12 and γ-gliadins with a short repetitive domain are more nutritional. A screening of toxic epitopes shows that γ-gliadins with a pattern of C9 and γ-gliadins with a short repetitive domain almost lack any epitopes.
Conclusion
γ-Gliadin sequences in wheat and closely related Aegilops species are diverse. Each group/subgroup contributes differently to nutritional quality and epitope content. It is suggested that the genes with a short repetitive domain are more nutritional and valuable. Therefore, it is possible to breed wheat varieties, the γ-gliadins of which are less, even non-toxic and more nutritional.
doi:10.1186/1471-2164-10-168
PMCID: PMC2685405  PMID: 19383144
14.  Characterization and comparative analysis of HMW glutenin 1Ay alleles with differential expressions 
BMC Plant Biology  2009;9:16.
Background
High-molecular-weight glutenin subunits (HMW-GSs) have been considered as most important seed storage proteins for wheat flour quality. 1Ay subunits are of great interest because they are always silent in common wheat. The presence of expressed 1Ay subunits in diploid and tetraploid wheat genotypes makes it possible to investigate molecular information of active 1Ay genes.
Results
We identified 1Ay subunits with different electrophoretic mobility from 141 accessions of diploid and tetraploid wheats, and obtained the complete ORFs and 5' flanking sequences of 1Ay genes including 6 active and 3 inactive ones. Furthermore, the 5' flanking sequences were characterized from 23 wild diploid species of Triticeae. All 6 active 1Ay possess a typical HMW-GS primary structure and some novel characteristics. The conserved cysteine residue within the repetitive domain of y-type subunits was replaced by phenylalanine residue in subunits of 1Ay (Tu-e1), 1Ay (Tu-e2), 1Ay (Ta-e2) and 1Ay (Td-e). Particularly, 1Ay (Ta-e3) has an unusual large molecular weight of 2202 bp and was one of the known largest y-type HMW-GSs. The translations of 1Ay (Tu-s), 1Ay (Ta-s) and 1Ay (Td-s) were disrupted by premature stop codons in their coding regions. The 5' flanking sequences of active and inactive 1Ay genes differ in a few base substitutions and insertions or deletions. The 85 bp deletions have been found in promoter regions of all 1Ay genes and the corresponding positions of 6 species from Aegilops and Hordeum.
Conclusion
The possession of larger molecular weight and fewer conserved cysteine residues are unique structural features of 1Ay genes; it would be interested to express them in bread wheat and further to examine their impact to processing quality of wheat. The 1Ay genes from T. urartu are closer to the genes from T. turgidum dicoccon and T. aestivum, than those from T. monococcum aegilopoides. The 85 bp deletion and some variations in the 5'flanking region, have not interrupted expression of 1Ay genes, whereas the defects in the coding regions could be responsible to the silence of the 1Ay genes. Some mutational events in more distant distal promoter regions are also possible causes for the inactivation of 1Ay genes.
doi:10.1186/1471-2229-9-16
PMCID: PMC2667398  PMID: 19196487
15.  Molecular evolution of dimeric α-amylase inhibitor genes in wild emmer wheat and its ecological association 
Background
α-Amylase inhibitors are attractive candidates for the control of seed weevils, as these insects are highly dependent on starch as an energy source. In this study, we aimed to reveal the structure and diversity of dimeric α-amylase inhibitor genes in wild emmer wheat from Israel and to elucidate the relationship between the emmer wheat genes and ecological factors using single nucleotide polymorphism (SNP) markers. Another objective of this study was to find out whether there were any correlations between SNPs in functional protein-coding genes and the environment.
Results
The influence of ecological factors on the genetic structure of dimeric α-amylase inhibitor genes was evaluated by specific SNP markers. A total of 244 dimeric α-amylase inhibitor genes were obtained from 13 accessions in 10 populations. Seventy-five polymorphic positions and 74 haplotypes were defined by sequence analysis. Sixteen out of the 75 SNP markers were designed to detect SNP variations in wild emmer wheat accessions from different populations in Israel. The proportion of polymorphic loci P (5%), the expected heterozygosity He, and Shannon's information index in the 16 populations were 0.887, 0.404, and 0.589, respectively. The populations of wild emmer wheat showed great diversity in gene loci both between and within populations. Based on the SNP marker data, the genetic distance of pair-wise comparisons of the 16 populations displayed a sharp genetic differentiation over long geographic distances. The values of P, He, and Shannon's information index were negatively correlated with three climatic moisture factors, whereas the same values were positively correlated by Spearman rank correlation coefficients' analysis with some of the other ecological factors.
Conclusion
The populations of wild emmer wheat showed a wide range of diversity in dimeric α-amylase inhibitors, both between and within populations. We suggested that SNP markers are useful for the estimation of genetic diversity of functional genes in wild emmer wheat. These results show significant correlations between SNPs in the α-amylase inhibitor genes and ecological factors affecting diversity. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs, and the SNPs could be classified into several categories as ecogeographical predictors. It was suggested that the SNPs in the α-amylase inhibitor genes have been subjected to natural selection, and ecological factors had an important evolutionary influence on gene differentiation at specific loci.
doi:10.1186/1471-2148-8-91
PMCID: PMC2324104  PMID: 18366725

Results 1-15 (15)