PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Noninvasive Fetal Trisomy (NIFTY) test: an advanced noninvasive prenatal diagnosis methodology for fetal autosomal and sex chromosomal aneuploidies 
BMC Medical Genomics  2012;5:57.
Background
Conventional prenatal screening tests, such as maternal serum tests and ultrasound scan, have limited resolution and accuracy.
Methods
We developed an advanced noninvasive prenatal diagnosis method based on massively parallel sequencing. The Noninvasive Fetal Trisomy (NIFTY) test, combines an optimized Student’s t-test with a locally weighted polynomial regression and binary hypotheses. We applied the NIFTY test to 903 pregnancies and compared the diagnostic results with those of full karyotyping.
Results
16 of 16 trisomy 21, 12 of 12 trisomy 18, two of two trisomy 13, three of four 45, X, one of one XYY and two of two XXY abnormalities were correctly identified. But one false positive case of trisomy 18 and one false negative case of 45, X were observed. The test performed with 100% sensitivity and 99.9% specificity for autosomal aneuploidies and 85.7% sensitivity and 99.9% specificity for sex chromosomal aneuploidies. Compared with three previously reported z-score approaches with/without GC-bias removal and with internal control, the NIFTY test was more accurate and robust for the detection of both autosomal and sex chromosomal aneuploidies in fetuses.
Conclusion
Our study demonstrates a powerful and reliable methodology for noninvasive prenatal diagnosis.
doi:10.1186/1755-8794-5-57
PMCID: PMC3544640  PMID: 23198897
Noninvasive Fetal Trisomy (NIFTY) test; Massively parallel sequencing; Autosomal aneuploidies; Sex chromosomal aneuploidies
2.  Incorporating Ab Initio energy into threading approaches for protein structure prediction 
BMC Bioinformatics  2011;12(Suppl 1):S54.
Background
Native structures of proteins are formed essentially due to the combining effects of local and distant (in the sense of sequence) interactions among residues. These interaction information are, explicitly or implicitly, encoded into the scoring function in protein structure prediction approaches—threading approaches usually measure an alignment in the sense that how well a sequence adopts an existing structure; while the energy functions in Ab Initio methods are designed to measure how likely a conformation is near-native. Encouraging progress has been observed in structure refinement where knowledge-based or physics-based potentials are designed to capture distant interactions. Thus, it is interesting to investigate whether distant interaction information captured by the Ab Initio energy function can be used to improve threading, especially for the weakly/distant homologous templates.
Results
In this paper, we investigate the possibility to improve alignment-generating through incorporating distant interaction information into the alignment scoring function in a nontrivial approach. Specifically, the distant interaction information is introduced through employing an Ab Initio energy function to evaluate the “partial” decoy built from an alignment. Subsequently, a local search algorithm is utilized to optimize the scoring function.
Experimental results demonstrate that with distant interaction items, the quality of generated alignments are improved on 68 out of 127 query-template pairs in Prosup benchmark. In addition, compared with state-to-art threading methods, our method performs better on alignment accuracy comparison.
Conclusions
Incorporating Ab Initio energy functions into threading can greatly improve alignment accuracy.
doi:10.1186/1471-2105-12-S1-S54
PMCID: PMC3044312  PMID: 21342587
3.  TreeFam: a curated database of phylogenetic trees of animal gene families 
Nucleic Acids Research  2005;34(Database issue):D572-D580.
TreeFam is a database of phylogenetic trees of gene families found in animals. It aims to develop a curated resource that presents the accurate evolutionary history of all animal gene families, as well as reliable ortholog and paralog assignments. Curated families are being added progressively, based on seed alignments and trees in a similar fashion to Pfam. Release 1.1 of TreeFam contains curated trees for 690 families and automatically generated trees for another 11 646 families. These represent over 128 000 genes from nine fully sequenced animal genomes and over 45 000 other animal proteins from UniProt; ∼40–85% of proteins encoded in the fully sequenced animal genomes are included in TreeFam. TreeFam is freely available at and .
doi:10.1093/nar/gkj118
PMCID: PMC1347480  PMID: 16381935
4.  The Genomes of Oryza sativa: A History of Duplications 
Yu, Jun | Wang, Jun | Lin, Wei | Li, Songgang | Li, Heng | Zhou, Jun | Ni, Peixiang | Dong, Wei | Hu, Songnian | Zeng, Changqing | Zhang, Jianguo | Zhang, Yong | Li, Ruiqiang | Xu, Zuyuan | Li, Shengting | Li, Xianran | Zheng, Hongkun | Cong, Lijuan | Lin, Liang | Yin, Jianning | Geng, Jianing | Li, Guangyuan | Shi, Jianping | Liu, Juan | Lv, Hong | Li, Jun | Wang, Jing | Deng, Yajun | Ran, Longhua | Shi, Xiaoli | Wang, Xiyin | Wu, Qingfa | Li, Changfeng | Ren, Xiaoyu | Wang, Jingqiang | Wang, Xiaoling | Li, Dawei | Liu, Dongyuan | Zhang, Xiaowei | Ji, Zhendong | Zhao, Wenming | Sun, Yongqiao | Zhang, Zhenpeng | Bao, Jingyue | Han, Yujun | Dong, Lingli | Ji, Jia | Chen, Peng | Wu, Shuming | Liu, Jinsong | Xiao, Ying | Bu, Dongbo | Tan, Jianlong | Yang, Li | Ye, Chen | Zhang, Jingfen | Xu, Jingyi | Zhou, Yan | Yu, Yingpu | Zhang, Bing | Zhuang, Shulin | Wei, Haibin | Liu, Bin | Lei, Meng | Yu, Hong | Li, Yuanzhe | Xu, Hao | Wei, Shulin | He, Ximiao | Fang, Lijun | Zhang, Zengjin | Zhang, Yunze | Huang, Xiangang | Su, Zhixi | Tong, Wei | Li, Jinhong | Tong, Zongzhong | Li, Shuangli | Ye, Jia | Wang, Lishun | Fang, Lin | Lei, Tingting | Chen, Chen | Chen, Huan | Xu, Zhao | Li, Haihong | Huang, Haiyan | Zhang, Feng | Xu, Huayong | Li, Na | Zhao, Caifeng | Li, Shuting | Dong, Lijun | Huang, Yanqing | Li, Long | Xi, Yan | Qi, Qiuhui | Li, Wenjie | Zhang, Bo | Hu, Wei | Zhang, Yanling | Tian, Xiangjun | Jiao, Yongzhi | Liang, Xiaohu | Jin, Jiao | Gao, Lei | Zheng, Weimou | Hao, Bailin | Liu, Siqi | Wang, Wen | Yuan, Longping | Cao, Mengliang | McDermott, Jason | Samudrala, Ram | Wang, Jian | Wong, Gane Ka-Shu | Yang, Huanming
PLoS Biology  2005;3(2):e38.
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
Comparative genome sequencing of indica and japonica rice reveals that duplication of genes and genomic regions has played a major part in the evolution of grass genomes
doi:10.1371/journal.pbio.0030038
PMCID: PMC546038  PMID: 15685292

Results 1-4 (4)