Search tips
Search criteria

Results 1-25 (29)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Genetic Analysis Identifies DDR2 as a Novel Gene Affecting Bone Mineral Density and Osteoporotic Fractures in Chinese Population 
PLoS ONE  2015;10(2):e0117102.
DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10−4, β: −0.018 for allele C), rs7553831 (P = 1.30×10−4, β: −0.018 for allele T), and rs6697469 (P = 1.59×10−3, β: −0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10−4, β: −0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn’t observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.
PMCID: PMC4319719  PMID: 25658585
2.  ANKRD7 and CYTL1 are novel risk genes for alcohol drinking behavior 
Chinese medical journal  2012;125(6):1127-1134.
Alcohol dependence (AD) is a complex disorder characterized by impaired control over drinking. It is determined by both genetic and environmental factors. The recent approach of genome-wide association study (GWAS) is a powerful tool for identifying complex disease-associated susceptibility alleles, however, a few GWASs have been conducted for AD, and their results are largely inconsistent. The present study aimed to screen the loci associated with alcohol-related phenotypes using GWAS technology.
A genome-wide association study with the behavior of regular alcohol drinking and alcohol consumption was performed to identify susceptibility genes associated with AD, using the Affymetrix 500K SNP array in an initial sample consisting of 904 unrelated Caucasian subjects. Then, the initial results in GWAS were replicated in three independent samples: 1972 Caucasians in 593 nuclear families, 761 unrelated Caucasian subjects, and 2955 unrelated Chinese Hans.
Several genes were associated with the alcohol-related phenotypes at the genome-wide significance level, with the ankyrin repeat domain 7 gene (ANKRD7) showing the strongest statistical evidence for regular alcohol drinking and suggestive statistical evidence for alcohol consumption. In addition, certain haplotypes within the ANKRD7 and cytokine-like1 (CYTL1) genes were significantly associated with regular drinking behavior, such as one ANKRD7 block composed of the SNPs rs6466686-rs4295599-rs12531086 (P = 6.51×10–8). The association of alcohol consumption was successfully replicated with rs4295599 in ANKRD7 gene in independent Caucasian nuclear families and independent unrelated Chinese Hans, and with rs16836497 in CYTL1 gene in independent unrelated Caucasians. Meta-analyses based on both the GWAS and replication samples further supported the observed significant associations between the ANKRD7 or CYTL1 gene and alcohol consumption.
The evidence suggests that ANKRD7 and CYTL1 genes may play an important role in the variance in AD risk.
PMCID: PMC4174677  PMID: 22613542
alcohol dependence; ANKRD7; CYTL1; genome-wide association study
3.  Genome-wide association study of copy number variation identified gremlin1 as a candidate gene for lean body mass 
Journal of human genetics  2011;57(1):33-37.
Lean body mass (LBM) is a heritable trait predicting a series of health problems, such as osteoporotic fracture and sarcopenia. We aim to identify sequence variants associated with LBM by a genome-wide association study (GWAS) of copy number variants (CNVs). We genotyped genome-wide CNVs of 1627 individuals of the Chinese population with Affymetrix SNP6.0 genotyping platform, which comprised of 9 40 000 copy number probes. We then performed a GWAS of CNVs with lean mass at seven sites: left and right arms, left and right legs, total of limb, trunk and whole body. We identified a CNV that is associated with LBM variation at the genome-wide significance level (CNV2073, Bonferroni corrected P-value 0.002 at right arm). CNV2073 locates at chromosome 15q13.3, which has been implicated as a candidate region for LBM by our previous linkage studies. The nearest gene, gremlin1, has a key role in the regulation of skeletal muscle formation and repair. Our results suggest that the gremlin1 gene is a potentially important gene for LBM variation. Our findings also show the utility and efficacy of CNV as genetic markers in association studies.
PMCID: PMC4169267  PMID: 22048656
association; copy number variation; gremlin1 gene; lean body mass; 15q13.3
4.  Gene-gene interaction between RBMS3 and ZNF516 influences bone mineral density 
Osteoporosis is characterized by low bone mineral density (BMD), a highly heritable trait that is determined, in part, by the actions and interactions of multiple genes. While an increasing number of genes have been identified to have independent effects on BMD, few studies have been performed to identify genes that interact with one another to affect BMD. In this study, we performed gene-gene interaction analyses in selected candidate genes in individuals with extremely high vs. low hip BMD (20% tails of the distributions), in two independent US Caucasian samples. The first sample contained 916 unrelated subjects with extreme hip BMD Z-scores selected from a population composed of 2,286 subjects. The second sample consisted of 400 unrelated subjects with extreme hip BMD Z-scores selected from a population composed of 1,000 subjects. Combining results from these two samples, we found one interacting gene pair (RBMS3 vs. ZNF516) which, even after Bonferroni correction for multiple testing, showed consistently significant effects on hip BMD. RMBS3 harbored two SNPs, rs6549904 and rs7640046, both of which had significant interactions with a SNP, rs4891159, located on ZNF516 (P values: 7.04×10−11 and 1.03×10−10). We further validated these results in two additional samples of Caucasian and African descent. The gene pair, RBMS3 vs. ZNF516, was successfully replicated in the Caucasian sample (P values: 8.07×10−3 and 2.91×10−3). For the African sample, a significant interaction was also detected (P values: 0.031 and 0.043), but the direction of the effect was opposite to that observed in the three Caucasian samples. By providing evidence for genetic interactions underlying BMD, this study further delineated the genetic architecture of osteoporosis.
PMCID: PMC4127986  PMID: 23045156
interaction; association; BMD; osteoporosis
5.  Genome-Wide Association Study Identified Copy Number Variants Important for Appendicular Lean Mass 
PLoS ONE  2014;9(3):e89776.
Skeletal muscle is a major component of the human body. Age-related loss of muscle mass and function contributes to some public health problems such as sarcopenia and osteoporosis. Skeletal muscle, mainly composed of appendicular lean mass (ALM), is a heritable trait. Copy number variation (CNV) is a common type of human genome variant which may play an important role in the etiology of many human diseases. In this study, we performed genome-wide association analyses of CNV for ALM in 2,286 Caucasian subjects. We then replicated the major findings in 1,627 Chinese subjects. Two CNVs, CNV1191 and CNV2580, were detected to be associated with ALM (p = 2.26×10−2 and 3.34×10−3, respectively). In the Chinese replication sample, the two CNVs achieved p-values of 3.26×10−2 and 0.107, respectively. CNV1191 covers a gene, GTPase of the immunity-associated protein family (GIMAP1), which is important for skeletal muscle cell survival/death in humans. CNV2580 is located in the Serine hydrolase-like protein (SERHL) gene, which plays an important role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli. In summary, our study suggested two novel CNVs and the related genes that may contribute to variation in ALM.
PMCID: PMC3953533  PMID: 24626161
6.  Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study 
Human genetics  2012;132(2):189-199.
Bone and muscle, two major tissue types of musculoskeletal system, have strong genetic determination. Abnormality in bone and/or muscle may cause musculoskeletal diseases such as osteoporosis and sarcopenia. Bone size phenotypes (BSPs), such as hip bone size (HBS), appendicular bone size (ABS), are genetically correlated with body lean mass (mainly muscle mass). However, the specific genes shared by these phenotypes are largely unknown. In this study, we aimed to identify the specific genes with pleiotropic effects on BSPs and appendicular lean mass (ALM).
We performed a bivariate genome-wide association study (GWAS) by analyzing ~690,000 SNPs in 1,627 unrelated Han Chinese adults (802 males and 825 females) followed by a replication study in 2,286 unrelated US Caucasians (558 males and 1728 females).
We identified 14 interesting single nucleotide polymorphisms (SNPs) that may contribute to variation of both BSPs and ALM, with p values <10−6 in discovery stage. Among them, the association of three SNPs (rs2507838, rs7116722, and rs11826261) in/near GLYAT (glycine-N-acyltransferase) gene was replicated in US Caucasians, with p values ranging from 1.89×10−3 to 3.71×10−4 for ALM-ABS, from 5.14×10−3 to 1.11×10−2 for ALM-HBS, respectively. Meta-analyses yielded stronger association signals for rs2507838, rs7116722, and rs11826261, with pooled p values of 1.68×10−8, 7.94×10−8, 6.80×10−8 for ALB-ABS and 1.22×10−4, 9.85×10−5, 3.96×10−4 for ALM-HBS, respectively. Haplotype allele ATA based on these three SNPs were also associated with ALM-HBS and ALM-ABS in both discovery and replication samples. Interestingly, GLYAT was previously found to be essential to glucose metabolism and energy metabolism, suggesting the gene’s dual role in both bone development and muscle growth.
Our findings, together with the prior biological evidence, suggest the importance of GLYAT gene in co-regulation of bone phenotypes and body lean mass.
PMCID: PMC3682481  PMID: 23108985
Bivariate GWAS; Bone size; Lean mass; GLYAT
7.  Bivariate Genome-Wide Association Analyses Identified Genes with Pleiotropic Effects for Femoral Neck Bone Geometry and Age at Menarche 
PLoS ONE  2013;8(4):e60362.
Femoral neck geometric parameters (FNGPs), which include cortical thickness (CT), periosteal diameter (W), buckling ratio (BR), cross-sectional area (CSA), and section modulus (Z), contribute to bone strength and may predict hip fracture risk. Age at menarche (AAM) is an important risk factor for osteoporosis and bone fractures in women. Some FNGPs are genetically correlated with AAM. In this study, we performed a bivariate genome-wide association study (GWAS) to identify new candidate genes responsible for both FNGPs and AAM. In the discovery stage, we tested 760,794 SNPs in 1,728 unrelated Caucasian subject, followed by replication analyses in independent samples of US Caucasians (with 501 subjects) and Chinese (with 826 subjects). We found six SNPs that were associated with FNGPs and AAM. These SNPs are located in three genes (i.e. NRCAM, IDS and LOC148145), suggesting these three genes may co-regulate FNGPs and AAM. Our findings may help improve the understanding of genetic architecture and pathophysiological mechanisms underlying both osteoporosis and AAM.
PMCID: PMC3617200  PMID: 23593202
8.  Genome-Wide Association Study Identified CNP12587 Region Underlying Height Variation in Chinese Females 
PLoS ONE  2012;7(9):e44292.
Human height is a highly heritable trait considered as an important factor for health. There has been limited success in identifying the genetic factors underlying height variation. We aim to identify sequence variants associated with adult height by a genome-wide association study of copy number variants (CNVs) in Chinese.
Genome-wide CNV association analyses were conducted in 1,625 unrelated Chinese adults and sex specific subgroup for height variation, respectively. Height was measured with a stadiometer. Affymetrix SNP6.0 genotyping platform was used to identify copy number polymorphisms (CNPs). We constructed a genomic map containing 1,009 CNPs in Chinese individuals and performed a genome-wide association study of CNPs with height.
We detected 10 significant association signals for height (p<0.05) in the whole population, 9 and 11 association signals for Chinese female and male population, respectively. A copy number polymorphism (CNP12587, chr18:54081842-54086942, p = 2.41×10−4) was found to be significantly associated with height variation in Chinese females even after strict Bonferroni correction (p = 0.048). Confirmatory real time PCR experiments lent further support for CNV validation. Compared to female subjects with two copies of the CNP, carriers of three copies had an average of 8.1% decrease in height. An important candidate gene, ubiquitin-protein ligase NEDD4-like (NEDD4L), was detected at this region, which plays important roles in bone metabolism by binding to bone formation regulators.
Our findings suggest the important genetic variants underlying height variation in Chinese.
PMCID: PMC3434125  PMID: 22957059
9.  Mitochondria-wide Association Study of Common Variants in Osteoporosis 
Annals of human genetics  2011;75(5):569-574.
Many lines of evidence suggest that mitochondrial DNA (mtDNA) variants are involved in the pathogenesis of human complex diseases, especially for age-related disorders. Osteoporosis is a typical age-related complex disease. However, the role of mtDNA variants in the susceptibility of osteoporosis is largely unknown. In this study, we performed a mitochondria-wide association study for osteoporosis in Caucasians. A total of 445 mitochondrial single nucleotide polymorphisms (mtSNPs) were genotyped in a large sample of 2,286 unrelated Caucasian subjects by using the Affymetrix Genome-Wide SNP Array 6.0, and 72 mtSNPs survived the quality control. We first tested for association between single-mtSNP and bone mineral density (BMD), and identified that, a mtSNP within the NADH dehydrogenase 2 gene (ND2), mt4823 C/A polymorphism, was strongly associated with hip BMD (P = 2.05 × 10−4), even after conservative Bonferroni correction‥ The C allele of mt4823 was associated with reduced hip BMD and the effect size (β) was estimated to be ~0.044. Another SNP mt15885 within the Cytochrome b gene (Cytb) was found to be associated both with spine (P = 1.66×10−3) and hip BMD (P = 0.023). The T allele of mt15885 had a protective effect on spine (β = 0.064) and hip BMD (β = 0.038). Next, we classified subjects into the nine common European haplogroups and conducted association analyses. Subjects classified as haplogroup X had significantly lower mean hip BMD values than others (P = 0.040). Our results highlighted the importance of mtDNA variants in influencing BMD variation and risk to osteoporosis.
PMCID: PMC3155639  PMID: 21762117
mtSNP; haplogroup; osteoporosis; BMD; association
10.  Genome-Wide Association Study of Copy Number Variants Suggests LTBP1 and FGD4 Are Important for Alcohol Drinking 
PLoS ONE  2012;7(1):e30860.
Alcohol dependence (AD) is a complex disorder characterized by psychiatric and physiological dependence on alcohol. AD is reflected by regular alcohol drinking, which is highly inheritable. In this study, to identify susceptibility genes associated with alcohol drinking, we performed a genome-wide association study of copy number variants (CNVs) in 2,286 Caucasian subjects with Affymetrix SNP6.0 genotyping array. We replicated our findings in 1,627 Chinese subjects with the same genotyping array. We identified two CNVs, CNV207 (combined p-value 1.91E-03) and CNV1836 (combined p-value 3.05E-03) that were associated with alcohol drinking. CNV207 and CNV1836 are located at the downstream of genes LTBP1 (870 kb) and FGD4 (400 kb), respectively. LTBP1, by interacting TGFB1, may down-regulate enzymes directly participating in alcohol metabolism. FGD4 plays a role in clustering and trafficking GABAA receptor and subsequently influence alcohol drinking through activating CDC42. Our results provide suggestive evidence that the newly identified CNV regions and relevant genes may contribute to the genetic mechanism of alcohol dependence.
PMCID: PMC3266269  PMID: 22295116
11.  The Fat Mass and Obesity Associated Gene, FTO, Is Also Associated with Osteoporosis Phenotypes 
PLoS ONE  2011;6(11):e27312.
Obesity and osteoporosis are closely correlated genetically. FTO gene has been consistently identified to be associated with obesity phenotypes. A recent study reported that the mice lacking Fto could result in lower bone mineral density (BMD). Thus, we hypothesize that the FTO gene might be also important for osteoporosis phenotypes. To test for such a hypothesis, we performed an association analyses to investigate the relationship between SNPs in FTO and BMD at both hip and spine. A total of 141 SNPs were tested in two independent Chinese populations (818 and 809 unrelated Han subjects, respectively) and a Caucasian population (2,286 unrelated subjects). Combining the two Chinese samples, we identified 6 SNPs in FTO to be significantly associated with hip BMD after multiple testing adjustments, with the combined P values ranged from 4.99×10−4–1.47×10−4. These 6 SNPs are all located at the intron 8 of FTO and in high linkage disequilibrium. Each copy of the minor allele of each SNP was associated with increased hip BMD values with the effect size (beta) of ∼0.025 and ∼0.015 in the Chinese sample 1 and 2, respectively. However, none of these 6 SNPs showed significant association signal in the Caucasian sample, by presenting some extent of ethnic difference. Our findings, together with the prior biological evidence, suggest that the FTO gene might be a new candidate for BMD variation and osteoporosis in Chinese populations.
PMCID: PMC3220685  PMID: 22125610
12.  Copy Number Variation in CNP267 Region May Be Associated with Hip Bone Size 
PLoS ONE  2011;6(7):e22035.
Osteoporotic hip fracture (HF) is a serious global public health problem associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of key measurable risk factors for HF, independent of bone mineral density (BMD). Hip BS is highly genetically determined, but genetic factors underlying BS variation are still poorly defined. Here, we performed an initial genome-wide copy number variation (CNV) association analysis for hip BS in 1,627 Chinese Han subjects using Affymetrix GeneChip Human Mapping SNP 6.0 Array and a follow-up replicate study in 2,286 unrelated US Caucasians sample. We found that a copy number polymorphism (CNP267) located at chromosome 2q12.2 was significantly associated with hip BS in both initial Chinese and replicate Caucasian samples with p values of 4.73E-03 and 5.66E-03, respectively. An important candidate gene, four and a half LIM domains 2 (FHL2), was detected at the downstream of CNP267, which plays important roles in bone metabolism by binding to several bone formation regulator, such as insulin-like growth factor-binding protein 5 (IGFBP-5) and androgen receptor (AR). Our findings suggest that CNP267 region may be associated with hip BS which might influence the FHL2 gene downstream.
PMCID: PMC3137628  PMID: 21789208
13.  Pathway-Based Genome-Wide Association Analysis Identified the Importance of Regulation-of-Autophagy Pathway for Ultradistal Radius BMD 
Journal of Bone and Mineral Research  2010;25(7):1572-1580.
Wrist fracture is not only one of the most common osteoporotic fractures but also a predictor of future fractures at other sites. Wrist bone mineral density (BMD) is an important determinant of wrist fracture risk, with high heritability. Specific genes underlying wrist BMD variation are largely unknown. Most published genome-wide association studies (GWASs) have focused only on a few top-ranking single-nucleotide polymorphisms (SNPs)/genes and considered each of the identified SNPs/genes independently. To identify biologic pathways important to wrist BMD variation, we used a novel pathway-based analysis approach in our GWAS of wrist ultradistal radius (UD) BMD, examining approximately 500,000 SNPs genome-wide from 984 unrelated whites. A total of 963 biologic pathways/gene sets were analyzed. We identified the regulation-of-autophagy (ROA) pathway that achieved the most significant result (p = .005, qfdr = 0.043, pfwer = 0.016) for association with UD BMD. The ROA pathway also showed significant association with arm BMD in the Framingham Heart Study sample containing 2187 subjects, which further confirmed our findings in the discovery cohort. Earlier studies indicated that during endochondral ossification, autophagy occurs prior to apoptosis of hypertrophic chondrocytes, and it also has been shown that some genes in the ROA pathway (e.g., INFG) may play important roles in osteoblastogenesis or osteoclastogenesis. Our study supports the potential role of the ROA pathway in human wrist BMD variation and osteoporosis. Further functional evaluation of this pathway to determine the mechanism by which it regulates wrist BMD should be pursued to provide new insights into the pathogenesis of wrist osteoporosis. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153999  PMID: 20200951
osteoporosis; bone mineral density; genome-wide association; regulation of autophagy; whites
14.  Genetic Association Study of Common Mitochondrial Variants on Body Fat Mass 
PLoS ONE  2011;6(6):e21595.
Mitochondria play a central role in ATP production and energy metabolism. Previous studies suggest that common variants in mtDNA are associated with several common complex diseases, including obesity. To test the hypothesis that common mtDNA variants influence obesity-related phenotypes, including BMI and body fat mass, we genotyped a total of 445 mtSNPs across the whole mitochondrial genome in a large sample of 2,286 unrelated Caucasian subjects. 72 of these 445 mtSNPs passed quality control criteria, and were used for subsequent analyses. We also classified all subjects into nine common European haplogroups. Association analyses were conducted for both BMI and body fat mass with single mtSNPs and mtDNA haplogroups. Two mtSNPs, mt4823 and mt8873 were detected to be significantly associated with body fat mass, with adjusted P values of 4.94×10-3 and 4.58×10-2, respectively. The minor alleles mt4823 C and mt8873 A were associated with reduced fat mass values and the effect size (β) was estimated to be 3.52 and 3.18, respectively. These two mtSNPs also achieved nominally significant levels for association with BMI. For haplogroup analyses, we found that haplogroup X was strongly associated with both BMI (adjusted P = 8.31×10-3) and body fat mass (adjusted P = 5.67×10-4) Subjects classified as haplogroup X had lower BMI and fat mass values, with the β estimated to be 2.86 and 6.03, respectively. Our findings suggest that common variants in mitochondria might play a role in variations of body fat mass. Further molecular and functional studies will be needed to clarify the potential mechanism.
PMCID: PMC3126834  PMID: 21747914
15.  IL21R and PTH May Underlie Variation of Femoral Neck Bone Mineral Density as Revealed by a Genome-wide Association Study 
Journal of Bone and Mineral Research  2009;25(5):1042-1048.
Bone mineral density (BMD) measured at the femoral neck (FN) is the most important risk phenotype for osteoporosis and has been used as a reference standard for describing osteoporosis. The specific genes influencing FN BMD remain largely unknown. To identify such genes, we first performed a genome-wide association (GWA) analysis for FN BMD in a discovery sample consisting of 983 unrelated white subjects. We then tested the top significant single-nucleotide polymorphisms (SNPs; 175 SNPs with p < 5 × 10−4) for replication in a family-based sample of 2557 white subjects. Combing results from these two samples, we found that two genes, parathyroid hormone (PTH) and interleukin 21 receptor (IL21R), achieved consistent association results in both the discovery and replication samples. The PTH gene SNPs, rs9630182, rs2036417, and rs7125774, achieved p values of 1.10 × 10−4, 3.24 × 10−4, and 3.06 × 10−4, respectively, in the discovery sample; p values of 6.50 × 10−4, 5.08 × 10−3, and 5.68 × 10−3, respectively, in the replication sample; and combined p values of 3.98 × 10−7, 9.52 × 10−6, and 1.05 × 10−5, respectively, in the total sample. The IL21R gene SNPs, rs8057551, rs8061992, and rs7199138, achieved p values of 1.51 × 10−4, 1.53 × 10−4, and 3.88 × 10−4, respectively, in the discovery sample; p values of 2.36 × 10−3, 6.74 × 10−3, and 6.41 × 10−3, respectively, in the replication sample; and combined p values of 2.31 × 10−6, 8.62 × 10−6, and 1.41 × 10−5, respectively, in the total sample. The effect size of each SNP was approximately 0.11 SD estimated in the discovery sample. PTH and IL21R both have potential biologic functions important to bone metabolism. Overall, our findings provide some new clues to the understanding of the genetic architecture of osteoporosis. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153368  PMID: 19874204
genome-wide association; BMD; PTH; IL21R; osteoporosis
16.  Genome-Wide Association Study for Femoral Neck Bone Geometry 
Poor femoral neck bone geometry at the femur is an important risk factor for hip fracture. We conducted a genome-wide association study (GWAS) of femoral neck bone geometry, examining approximately 379,000 eligible single-nucleotide polymorphisms (SNPs) in 1000 Caucasians. A common genetic variant, rs7430431 in the receptor transporting protein 3 (RTP3) gene, was identified in strong association with the buckling ratio (BR, P = 1.6 × 10−7), an index of bone structural instability, and with femoral cortical thickness (CT, P = 1.9 × 10−6). The RTP3 gene is located in 3p21.31, a region that we found to be linked with CT (LOD = 2.19, P = 6.0 × 10−4) in 3998 individuals from 434 pedigrees. The replication analyses in 1488 independent Caucasians and 2118 Chinese confirmed the association of rs7430431 to BR and CT (combined P = 7.0 × 10−3 for BR and P = 1.4 × 10−2 for CT). In addition, 350 hip fracture patients and 350 healthy control individuals were genotyped to assess the association of the RTP3 gene with the risk of hip fracture. Significant association between a nearby common SNP, rs10514713 of the RTP3 gene, and hip fracture (P = 1.0 × 10−3) was found. Our observations suggest that RTP3 may be a novel candidate gene for femoral neck bone geometry. © 2010 American Society for Bone and Mineral Research
PMCID: PMC3153387  PMID: 20175129
genome-wide association; femoral neck bone geometry; bone fracture; RTP3
17.  The regulation-of-autophagy pathway may influence Chinese stature variation: evidence from elder adults 
Journal of human genetics  2010;55(7):441-447.
Recent success of genome-wide association studies (GWASs) on human height variation emphasized the effects of individual loci or genes. In this study, we used a developed pathway-based approach to further test biological pathways for potential association with stature, by examining ∼370 000 single-nucleotide polymorphisms (SNPs) across the human genome in 618 unrelated elder Han Chinese. A total of 626 biological pathways annotated by any of the three major public pathway databases (KEGG, BioCarta and Ambion GeneAssist Pathway Atlas) were tested. The regulation-of-autophagy (ROA) (nominal P=0.012) pathway was marginally significantly associated with human stature after our family wise error rate multiple-testing correction. We also used 1000 random recruited US whites for further replication. Interestingly, the ROA pathway presented the strongest signals in whites for height variation (nominal P=0.002). The results correspond to biological roles of the ROA pathway in human long bone development and growth. Our findings also implied that multiple-genetic factors may work jointly as a functional unit (pathway), and the traditional GWASs could have missed important genetic information imbedded in those less significant markers.
PMCID: PMC2923432  PMID: 20448653
autophagy; GWAS; height; pathway; stature
18.  HMGA2 Is Confirmed To Be Associated with Human Adult Height 
Annals of human genetics  2009;74(1):11-16.
Recent genome-wide association studies have identified a novel polymorphism rs1042725 in HMGA2 gene for human adult height, a highly heritable complex trait. Replications in independent populations are needed to evaluate a positive finding and determine its generality. Thus, we performed a replication study to examine the associations between polymorphisms in HMGA2 and adult height in two US Caucasian populations (an unrelated sample of 998 subjects and a family-based sample of 8,385 subjects) and a Chinese population (1,638 unrelated Han subjects). We confirmed the association between rs1042725 in HMGA2 and adult height both in the unrelated and family-based Caucasian populations (overall P = 4.25×10−9). Another two SNPs (rs7968902 and rs7968682), which were in high linkage disequilibrium with rs1042725, also achieved the significance level in both Caucasian populations (overall P = 6.34×10−7, and 2.72×10−9, respectively). Our results provide a strong support to the initial finding. Moreover, SNP rs1042725 was firstly found to be associated with adult height (P = 0.008) in the Chinese population, and the effect is in the same direction as in the Caucasian populations, suggesting that it is a common variant across different populations. Our study further highlights the importance of the HMGA2 gene involved in normal growth.
PMCID: PMC2972475  PMID: 19930247
replication; adult height; HMGA2; association
19.  Impact of female cigarette smoking on circulating B cells in vivo: the suppressed ICOSLG, TCF3, and VCAM1 gene functional network may inhibit normal cell function 
Immunogenetics  2010;62(4):237-251.
As pivotal immune guardians, B cells were found to be directly associated with the onset and development of many smoking-induced diseases. However, the in vivo molecular response of B cells underlying the female cigarette smoking remains unknown. Using the genome-wide Affymetrix HG-133A GeneChip® microarray, we firstly compared the gene expression profiles of peripheral circulating B cells between 39 smoking and 40 non-smoking healthy US white women. A total of 125 differential expressed genes were identified in our study, and 75.2% of them were down-regulated in smokers. We further obtained genotypes of 702 single nucleotide polymorphisms in those promising genes and assessed their associations with smoking status. Using a novel multicriteria evaluation model integrating information from microarray and the association studies, several genes were further revealed to play important roles in the response of smoking, including ICOSLG (CD275, inducible T-cell co-stimulator ligand), TCF3 (E2A immunoglobulin enhancer binding factors E12/E47), VCAM1 (CD106, vascular cell adhesion molecule 1), CCR1 (CD191, chemokine C-C motif receptor 1) and IL13 (interleukin 13). The differential expression of ICOSLG (p = 0.0130) and TCF3 (p = 0.0125) genes between the two groups were confirmed by realtime reverse transcription PCR experiment. Our findings support the functional importance of the identified genes in response to the smoking stimulus. This is the first in vivo genome-wide expression study on B cells at today’s context of high prevalence rate of smoking for women. Our results highlight the potential usage of integrated analyses for unveiling the novel pathogenesis mechanism and emphasized the significance of B cells in the etiology of smoking-induced disease.
PMCID: PMC2925024  PMID: 20217071
Cigarette smoking; B cells; Microarray; Genome-wide; Association
20.  Genome-wide Copy Number Variation Association Study Suggested VPS13B Gene for Osteoporosis in Caucasian 
Bone mineral density (BMD) and femoral neck cross-sectional geometric parameters (FNCSGPs) are under strong genetic control. DNA copy number variation (CNV) is an important source of genetic diversity for human diseases. This study aims to identify CNVs associated with BMD and FNCSGPs.
Genome-wide CNV association analyses were conducted in 1,000 unrelated Caucasian subjects for BMD at the spine, hip, femoral neck, and for three FNCSGPs - cortical thickness (CT), cross section area (CSA), and buckling ratio (BR). BMD was measured by dual energy X-ray absorptiometry (DEXA). CT, CSA, and BR were estimated using DEXA measurements. Affymetrix 500K arrays and copy number analysis tool was used to identify CNVs.
A CNV in VPS13B gene was significantly associated with spine, hip and FN BMDs, and CT, CSA, and BR (p < 0.05). Compared to subjects with 2 copies of the CNV, carriers of one copy had an average of 14.6%, 12.4%, and 13.6% higher spine, hip, and FN BMD, 20.0% thicker CT, 10.6% larger CSA, and 12.4% lower BR. Thus a decrease of the CNV consistently produced stronger bone, thereby reducing osteoporotic fracture risk.
VPS13B gene, via affecting BMD and FNCSGPs, is a novel osteoporosis risk gene
PMCID: PMC2924432  PMID: 19680589
copy number variation; bone mineral density; bone geometry; osteoporosis
21.  Genome-wide association study identifies two novel loci containing FLNB and SBF2 genes underlying stature variation 
Human Molecular Genetics  2008;18(9):1661-1669.
Human stature, as an important physical index in clinical practice and a usual covariate in gene mapping of complex disorders, is a highly heritable complex trait. To identify specific genes underlying stature, a genome-wide association study was performed in 1000 unrelated homogeneous Caucasian subjects using Affymetrix 500K arrays. A group of seven contiguous markers in the region of SBF2 gene (Set-binding factor 2) are associated with stature, significantly so at the genome-wide level after false discovery rate (FDR) correction (FDR q = 0.034–0.042). Three SNPs in another SNP group in the Filamin B (FLNB) gene were also associated with stature, significantly so with FDR q = 0.042–0.048. In follow-up independent replication studies, rs10734652 in the SBF2 gene was significantly (P = 0.036) and suggestively (P = 0.07) associated with stature in Caucasian families and 1306 unrelated Caucasian subjects, respectively, and rs9834312 in the FLNB gene was also associated with stature in such two independent Caucasian populations (P = 0.008 in unrelated sample and P = 0.049 in family sample). Particularly, additional significant replication association signals were detected in Chinese, an ethnic population different from Caucasian, between rs9834312 and stature in 619 unrelated northern Chinese subjects (P = 0.017), as well as between rs10734652 and stature in 2953 unrelated southern Chinese subjects (P = 0.048). This study also provides additional replication evidence for some of the already published stature loci. These results, together with the known functional relevance of the SBF2 and FLNB genes to skeletal linear growth and bone formation, support that two regions containing FLNB and SBF2 genes are two novel loci underlying stature variation.
PMCID: PMC2667283  PMID: 19039035
22.  Genome-Wide Association Study Identifies ALDH7A1 as a Novel Susceptibility Gene for Osteoporosis 
PLoS Genetics  2010;6(1):e1000806.
Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.
Author Summary
Osteoporosis is a major health concern worldwide. It is a highly heritable disease characterized mainly by low bone mineral density (BMD) and/or osteoporotic fractures. However, the specific genetic variants determining risk for low BMD or OF are largely unknown. Here, taking advantage of recent technological advances in human genetics, we performed a genome-wide association study and follow-up validation studies to identify genetic variants for osteoporosis. By examining a total of 11,568 individuals from Chinese and Caucasian populations, we discovered a susceptibility gene, ALDH7A1, which is associated with hip osteoporotic fracture and BMD. ALDH7A1 might inhibit osteoblast proliferation and decrease bone formation. Our finding opens a new avenue for exploring the pathophysiology of osteoporosis.
PMCID: PMC2794362  PMID: 20072603
23.  Polymorphisms of the low‐density lipoprotein receptor‐related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family‐based association study 
Journal of Medical Genetics  2006;43(10):798-803.
The low‐density lipoprotein receptor‐related protein 5 (LRP5) gene, essential for glucose and cholesterol metabolism, may have a role in the aetiology of obesity, an important risk factor for diabetes.
Participants and methods
To investigate the association between LRP5 polymorphisms and obesity, 27 single‐nucleotide polymorphisms (SNPs), spacing about 5 kb apart on average and covering the full transcript length of the LRP5 gene, were genotyped in 1873 Caucasian people from 405 nuclear families. Obesity (defined as body mass index (BMI) >30 kg/m2) and three obesity‐related phenotypes (BMI, fat mass and percentage of fat mass (PFM)) were investigated.
Single markers (12 tagging SNPs and 4 untaggable SNPs) and haplotypes (5 blocks) were tested for associations, using family‐based designs. SNP4 (rs4988300) and SNP6 (rs634008) located in block 2 (intron 1) showed significant associations with obesity and BMI after Bonferroni correction (SNP4: p<0.001 and p = 0.001, respectively; SNP6: p = 0.002 and 0.003, respectively). The common allele A for SNP4 and minor allele G for SNP6 were associated with an increased risk of obesity. Significant associations were also observed between common haplotype A–G–G–G of block 2 with obesity, BMI, fat mass and PFM with global empirical values p<0.001, p<0.001, p = 0.003 and p = 0.074, respectively. Subsequent sex‐stratified analyses showed that the association in the total sample between block 2 and obesity may be mainly driven by female subjects.
Intronic variants of the LRP5 gene are markedly associated with obesity. We hypothesise that such an association may be due to the role of LRP5 in the WNT signalling pathway or lipid metabolism. Further functional studies are needed to elucidate the exact molecular mechanism underlying our finding.
PMCID: PMC1829485  PMID: 16723389
24.  Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population 
Journal of human genetics  2009;54(4):199-202.
Obesity is a major public health problem characterized with high body mass index (BMI). Copy number variations (CNVs) have been identified to be associated with complex human diseases. The effect of CNVs on obesity is unknown. In this study, we explored the association of CNVs with BMI in 597 Chinese Han subjects using Affymetrix GeneChip Human Mapping 500K Array Set. We found that one CNV at 10q11.22 (from 46.36 Mb to 46.56 Mb) was associated with BMI (the raw P=0.011). The CNV contributed 1.6% of BMI variation, and it covered one important obesity gene—pancreatic polypeptide receptor 1(PPYR1). It was reported that PPYR1 was a key regulator of energy homeostasis. Our findings suggested that CNV might be potentially important for the BMI variation. In addition, our study suggested that CNV might be used as a genetic marker to locate genes associated with BMI in Chinese population.
PMCID: PMC2733232  PMID: 19229253
10q11.22; BMI; copy number variation (CNV); PPYR1
25.  Genome-wide association scan for stature in Chinese: evidence for ethnic specific loci 
Human genetics  2008;125(1):1-9.
In Caucasian, several studies have identified some common variants associated with human stature variation. However, no such study was performed in Chinese, which is the largest population in the world and evidently differs from Caucasian in genetic background. To identify common or ethnic specific genes for stature in Chinese, an initial GWAS and follow-up replication study were performed. Our initial GWAS study found that a group of 13 contiguous SNPs, which span a region of ∼150 kb containing two neighboring genes, zinc finger protein (ZNP) 510 and ZNP782, achieved strong signals for association with stature, with P values ranging from 9.71 × 10−5 to 3.11 × 10−6. After false discovery rate correction for multiple testing, 9 of the 13 SNPs remain significant (FDR q = 0.036–0.046). The follow-up replication study in an independent 2,953 unrelated southern Chinese confirmed the association of rs10816533 with stature (P = 0.029). All the13 SNPs were in consistently strong linkage disequilibrium (D′ > 0.99) and formed a single perfect haplotype block. The minor allele frequencies for the 13 contiguous SNPs have evidently ethnic difference, which range from 0.21 to 0.33 in Chinese but have as low as ∼0.017 reported in dbSNP database in Caucasian. The present results suggest that the genomic region containing the ZNP510 and ZNP782 genes is an ethnic specific locus associated with stature variation in Chinese.
PMCID: PMC2730511  PMID: 19030899

Results 1-25 (29)