Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Xu, jingli")
1.  The interactome as a tree—an attempt to visualize the protein–protein interaction network in yeast 
Nucleic Acids Research  2004;32(16):4804-4811.
The refinement and high-throughput of protein interaction detection methods offer us a protein–protein interaction network in yeast. The challenge coming along with the network is to find better ways to make it accessible for biological investigation. Visualization would be helpful for extraction of meaningful biological information from the network. However, traditional ways of visualizing the network are unsuitable because of the large number of proteins. Here, we provide a simple but information-rich approach for visualization which integrates topological and biological information. In our method, the topological information such as quasi-cliques or spoke-like modules of the network is extracted into a clustering tree, where biological information spanning from protein functional annotation to expression profile correlations can be annotated onto the representation of it. We have developed a software named PINC based on our approach. Compared with previous clustering methods, our clustering method ADJW performs well both in retaining a meaningful image of the protein interaction network as well as in enriching the image with biological information, therefore is more suitable in visualization of the network.
PMCID: PMC519110  PMID: 15356297
2.  Date of origin of the SARS coronavirus strains 
A new respiratory infectious epidemic, severe acute respiratory syndrome (SARS), broke out and spread throughout the world. By now the putative pathogen of SARS has been identified as a new coronavirus, a single positive-strand RNA virus. RNA viruses commonly have a high rate of genetic mutation. It is therefore important to know the mutation rate of the SARS coronavirus as it spreads through the population. Moreover, finding a date for the last common ancestor of SARS coronavirus strains would be useful for understanding the circumstances surrounding the emergence of the SARS pandemic and the rate at which SARS coronavirus diverge.
We propose a mathematical model to estimate the evolution rate of the SARS coronavirus genome and the time of the last common ancestor of the sequenced SARS strains. Under some common assumptions and justifiable simplifications, a few simple equations incorporating the evolution rate (K) and time of the last common ancestor of the strains (T0) can be deduced. We then implemented the least square method to estimate K and T0 from the dataset of sequences and corresponding times. Monte Carlo stimulation was employed to discuss the results.
Based on 6 strains with accurate dates of host death, we estimated the time of the last common ancestor to be about August or September 2002, and the evolution rate to be about 0.16 base/day, that is, the SARS coronavirus would on average change a base every seven days. We validated our method by dividing the strains into two groups, which coincided with the results from comparative genomics.
The applied method is simple to implement and avoid the difficulty and subjectivity of choosing the root of phylogenetic tree. Based on 6 strains with accurate date of host death, we estimated a time of the last common ancestor, which is coincident with epidemic investigations, and an evolution rate in the same range as that reported for the HIV-1 virus.
PMCID: PMC516801  PMID: 15028113

Results 1-2 (2)