Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Wu, yantai")
1.  Analysis of differentially expressed genes in two immunologically distinct strains of Eimeria maxima using suppression subtractive hybridization and dot-blot hybridization 
Parasites & Vectors  2014;7:259.
It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear.
Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis.
A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses.
The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis.
PMCID: PMC4049472  PMID: 24894832
E. maxima; Differentially expressed genes; Suppression subtractive hybridization (SSH); Dot-blot hybridization
2.  Lack of detection of host associated differences in Newcastle disease viruses of genotype VIId isolated from chickens and geese 
Virology Journal  2012;9:197.
The goose is usually considered to be resistant even to strains of Newcastle disease virus (NDV) that are markedly virulent for chickens. However, ND outbreaks have been frequently reported in goose flocks in China since the late 1990s with the concurrent emergence of genotype VIId NDV in chickens. Although the NDVs isolated from both chickens and geese in the past 15 years have been predominantly VIId viruses, published data comparing goose- and chicken-originated ND viruses are scarce and controversial.
In this paper, we compared genotype VIId NDVs originated from geese and chickens genetically and pathologically. Ten entire genomic sequences and 329 complete coding sequences of individual genes from genotype VIId NDVs of both goose- and chicken-origin were analyzed. We then randomly selected two goose-originated and two chicken-originated VIId NDVs and compared their pathobiology in both geese and chickens in vivo and in vitro with genotype IV virus Herts/33 as a reference. The results showed that all the VIId NDVs either from geese or from chickens shared high sequence homology and characteristic amino acid substitutions and clustered together in phylogenetic trees. In addition, geese and chickens infected by goose or chicken VIId viruses manifested very similar pathological features distinct from those of birds infected with Herts/33.
There is no genetic or phenotypic difference between genotype VIId NDVs originated from geese and chickens. Therefore, no species-preference exists for either goose or chicken viruses and more attention should be paid to the trans-species transmission of VIId NDVs between geese and chickens for the control and eradication of ND.
PMCID: PMC3491030  PMID: 22971647
Genotype VIId Newcastle disease virus; Genetic; Phenotypic; Geese; Chickens
3.  Protection conferred by a recombinant Marek’s disease virus that expresses the spike protein from infectious bronchitis virus in specific pathogen-free chicken 
Virology Journal  2012;9:85.
In many countries, the predominant field isolates of infectious bronchitis virus (IBV) have been classified as QX-like strains since 1996. However, no commercial vaccines that are specific for this type of IBV are currently available. Therefore, there is an urgent need to develop novel vaccines that prevent QX-like IBV infection.
A recombinant Marek’s disease virus (MDV), rMDV-S1, that expresses the S1 subunit of the spike (S) protein from the QX-like infectious bronchitis virus (IBV) was constructed by inserting the IBV S1 gene into the genome of the CVI988/Rispens strain of MDV. Specific pathogen-free (SPF) chickens that were vaccinated with rMDV-S1 were protected when challenged with the QX-like IBV. They were observed to have mild clinical signs of disease, a short virus-shedding period and low mortality. Additionally, the rMDV-S1 conferred full protection to chickens against virulent MDV, as did the CVI988/Rispens strain.
Our results demonstrate that rMDV-S1 is an effective and promising recombinant vaccine for the prevention of QX-like IBV infection.
PMCID: PMC3447679  PMID: 22559869
Infectious bronchitis virus; Spike protein; Marek’s disease virus
4.  Entire genome sequence analysis of genotype IX Newcastle disease viruses reveals their early-genotype phylogenetic position and recent-genotype genome size 
Virology Journal  2011;8:117.
Six nucleotide (nt) insertion in the 5'-noncoding region (NCR) of the nucleoprotein (NP) gene of Newcaslte disease virus (NDV) is considered to be a genetic marker for recent genotypes of NDV, which emerged after 1960. However, F48-like NDVs from China, identified a 6-nt insert in the NP gene, have been previously classified into genotype III or genotype IX.
In order to clarify their phylogenetic position and explore the origin of NDVs with the 6-nt insert and its significance in NDV evolution, we determined the entire genome sequences of five F48-like viruses isolated in China between 1946 and 2002 by RT-PCR amplification of overlapping fragments of full-length genome and rapid amplification of cDNA ends. All the five NDV isolates shared the same genome size of 15,192-nt with the recent genotype V-VIII viruses whereas they had the highest homology with early genotype III and IV isolates.
The unique characteristic of the genome size and phylogenetic position of F48-like viruses warrants placing them in a separate geno-group, genotype IX. Results in this study also suggest that genotype IX viruses most likely originate from a genotype III virus by insertion of a 6-nt motif in the 5'-NCR of the NP gene which had occurred as early as in 1940 s, and might be the common origin of genotype V-VIII viruses.
PMCID: PMC3063233  PMID: 21396134
5.  A Novel Genotype H9N2 Influenza Virus Possessing Human H5N1 Internal Genomes Has Been Circulating in Poultry in Eastern China since 1998 ▿ †  
Journal of Virology  2009;83(17):8428-8438.
Many novel reassortant influenza viruses of the H9N2 genotype have emerged in aquatic birds in southern China since their initial isolation in this region in 1994. However, the genesis and evolution of H9N2 viruses in poultry in eastern China have not been investigated systematically. In the current study, H9N2 influenza viruses isolated from poultry in eastern China during the past 10 years were characterized genetically and antigenically. Phylogenetic analysis revealed that these H9N2 viruses have undergone extensive reassortment to generate multiple novel genotypes, including four genotypes (J, F, K, and L) that have never been recognized before. The major H9N2 influenza viruses represented by A/Chicken/Beijing/1/1994 (Ck/BJ/1/94)-like viruses circulating in poultry in eastern China before 1998 have been gradually replaced by A/Chicken/Shanghai/F/1998 (Ck/SH/F/98)-like viruses, which have a genotype different from that of viruses isolated in southern China. The similarity of the internal genes of these H9N2 viruses to those of the H5N1 influenza viruses isolated from 2001 onwards suggests that the Ck/SH/F/98-like virus may have been the donor of internal genes of human and poultry H5N1 influenza viruses circulating in Eurasia. Experimental studies showed that some of these H9N2 viruses could be efficiently transmitted by the respiratory tract in chicken flocks. Our study provides new insight into the genesis and evolution of H9N2 influenza viruses and supports the notion that some of these viruses may have been the donors of internal genes found in H5N1 viruses.
PMCID: PMC2738149  PMID: 19553328
6.  Revaccination with Marek's Disease Vaccines Induces Productive Infection and Superior Immunity▿  
The most common lymphoproliferative disease in chickens is Marek's disease (MD), which is caused by the oncogenic herpesvirus Marek's disease virus (MDV). The emergence of hypervirulent pathotypes of MDV has led to vaccine failures, which have become common and which have resulted in serious economic losses in some countries, and a revaccination strategy has been introduced in practice. The mechanism by which revaccination invokes superior immunity against MD is unknown. After field trials which showed that revaccination provided protection superior to that provided by a single vaccination were performed, experiments were conducted to explore the interaction between revaccinated chickens and MDV. The results showed that the chickens in the revaccination groups experienced two consecutive productive infections but that the chickens in the single-vaccination groups experienced one productive infection, demonstrating that revaccination of viruses caused the chickens to have productive and then latent infections. Revaccination of the virus induced in the chickens a higher and a longer temporary expansion of the CD8+, CD4+, and CD3+ T-lymphocyte subpopulations, stronger peripheral blood lymphocyte proliferative activity; and higher levels of neutralizing antibody than single vaccination. These findings disagree with the postulate that MDV antigens persist, stimulate the immune system, and maintain a high level immunity after vaccination. The suppression of productive infection by maternal antibodies in chickens receiving the primary vaccination and a lower level of productive infection in the revaccination groups challenged with MDV were observed. The information obtained in this study suggests that the productive infection with revaccinated MDV in chickens plays a crucial role in the induction of superior immunity. This finding may be exploited for the development of a novel MD vaccine that results in the persistence of the antigen supply and that maintains a high level of immunity and may also have implications for other viral oncogenic diseases in humans and animals.
PMCID: PMC2643530  PMID: 19052160

Results 1-6 (6)