Search tips
Search criteria

Results 1-25 (49)

Clipboard (0)

Select a Filter Below

Year of Publication
author:("Wu, jiangyou")
1.  Rescue of Wild-type Mumps Virus from a Strain Associated with Recent Outbreaks Helps to Define the Role of the SH ORF in the Pathogenesis of Mumps Virus 
Virology  2011;417(1):126-136.
Mumps virus (MuV) causes acute infections in humans. In recent years, MuV has caused epidemics among highly vaccinated populations. The largest outbreak in the U.S. in the past 20 years occurred in 2005–2006 with over reported 5,000 cases which the majority of the cases was in vaccinated young adults. We sequenced the complete genome of a representative strain from the epidemic (MuV-IA). MuV-IA is a member of genotype G, the same genotype of MuV that was associated with the outbreak in the UK in 2004–2005. We constructed a reverse genetics system for MuV-IA (rMuV-IA), and rescued a virus lacking the open reading frame (ORF) of the SH gene (rMuVΔSH). rMuVΔSH infection in L929 cells induced increased NF-κB activation, TNF-α production and apoptosis compared to rMuV-IA. rMuVΔSH was attenuated in an animal model. These results indicated that the SH ORF of MuV plays a significant role in interfering with TNF-α signaling and viral pathogenesis during virus infection.
PMCID: PMC3959920  PMID: 21676427
2.  Tetherin has negligible activity in restricting hepatitis C virus in hepatocytes 
Innate immunity  2011;18(3):398-405.
We investigated the ability of tetherin, a recently identified antiviral factor, in restricting hepatitis C virus (HCV) in the Japanese fulminant hepatitis-1 (JFH-1) infectious cell culture system. Human hepatocytes (Huh7, Huh7.5.1) expressed low levels of endogenous tetherin, which could be induced by IFN-α. However, tetherin contributes little to IFN-α-mediated anti-HCV JFH-1 activity. Although tetherin could inhibit Vpu-deleted HIV-1 release, it had negligible activity in restricting HCV JFH-1 release from hepatocytes, which was evidenced by unaffected levels of intracellular/extracellular HCV RNA and infectious virus. The failure of tetherin’s anti-HCV activity could not be related to the counteraction of HCV, as HCV infection of hepatocytes affected neither tetherin expression nor anti-HIV function of tetherin. These observations imply that tetherin has negligible activity in the restriction of HCV JFH-1 in human hepatocytes.
PMCID: PMC3937259  PMID: 21940748
Hepatitis C virus; innate immunity; interferon; tetherin; virus release
3.  PolyC-Binding Protein 1 Interacts with 5′-Untranslated Region of Enterovirus 71 RNA in Membrane-Associated Complex to Facilitate Viral Replication 
PLoS ONE  2014;9(1):e87491.
Enterovirus 71 (EV71) is one causative agent of hand, foot, and mouth disease (HFMD), which may lead to severe neurological disorders and mortality in children. EV71 genome is a positive single-stranded RNA containing a single open reading frame (ORF) flanked by 5′-untranslated region (5′UTR) and 3′UTR. The 5′UTR is fundamentally important for virus replication by interacting with cellular proteins. Here, we revealed that poly(C)-binding protein 1 (PCBP1) specifically binds to the 5′UTR of EV71. Detailed studies indicated that the RNA-binding K-homologous 1 (KH1) domain of PCBP1 is responsible for its binding to the stem-loop I and IV of EV71 5′UTR. Interestingly, we revealed that PCBP1 is distributed in the nucleus and cytoplasm of uninfected cells, but mainly localized in the cytoplasm of EV71-infected cells due to interaction and co-localization with the viral RNA. Furthermore, sub-cellular distribution analysis showed that PCBP1 is located in ER-derived membrane, in where virus replication occurred in the cytoplasm of EV71-infected cells, suggesting PCBP1 is recruited in a membrane-associated replication complex. In addition, we found that the binding of PCBP1 to 5′UTR resulted in enhancing EV71 viral protein expression and virus production so as to facilitate viral replication. Thus, we revealed a novel mechanism in which PCBP1 as a positive regulator involved in regulation of EV71 replication in the host specialized membrane-associated replication complex, which provides an insight into cellular factors involved in EV71 replication.
PMCID: PMC3906175  PMID: 24489926
4.  Plant compensation to grazing and soil carbon dynamics in a tropical grassland 
PeerJ  2014;2:e233.
The effects of grazing on soil organic carbon (SOC) dynamics, particularly in the tropics, are still poorly understood. Plant compensation to grazing, whereby plants maintain leaf area (C input capacity) despite consumption (C removal) by grazers, has been demonstrated in tropical grasslands but its influence on SOC is largely unexplored. Here, the effect of grazing on plant leaf area index (LAI) was measured in a field experiment in Serengeti National Park, Tanzania. LAI changed little for grazing intensities up to 70%. The response curve of LAI versus grazing intensity was used in a mass balance model, called SNAP, of SOC dynamics based on previous data from the Serengeti. The model predicted SOC to increase at intermediate grazing intensity, but then to decline rapidly at the highest grazing intensities. The SNAP model predictions were compared with observed SOC stocks in the 24 grazed plots of a 10-year grazing exclosure experiment at eight sites across the park that varied in mean annual rainfall, soil texture, grazing intensity and plant lignin and cellulose. The model predicted current SOC stocks very well (R2 > 0.75), and suggests that compensatory plant responses to grazing are an important means of how herbivores might maintain or increase SOC in tropical grasslands.
PMCID: PMC3912448  PMID: 24498573
Herbivory; Grazing; Plants; Compensation; Leaf area; Soil carbon; Modeling; Grasslands; Tropical; Serengeti
5.  Downregulation of RelA (p65) by Rapamycin Inhibits Murine Adipocyte Differentiation and Reduces Fat Mass of C57BL/6J Mice despite High Fat Diet 
ISRN Obesity  2014;2014:540582.
Rapamycin (RAPA) is a clinical immunosuppressive agent first reported in the literature in 1975 after its discovery in a soil sample from the island of Rapa Nui. Aside from the well-documented effects of RAPA on cell division and immunologic response, the literature reveals it to have negative effects on adipocyte and osteocyte differentiation as well. Understanding of the molecular effects of RAPA on cell differentiation is fragmentary in regard to these cell lineages. In this paper, we examined a potential mechanism for RAPA's effects on adipocyte differentiation in vitro and in vivo. The data point to a unique role of Rel A (p65)—a component of the NF-κB system—in mediating this event. In murine adipose derived stem cell cultures (muADSCs) from C57BL/6J mice, RAPA was found to selectively downregulate RelA/p65, mammalian target of rapamycin (mTOR), and do so in a dose-dependent manner. This implies a novel role for RelA in adipocyte biology. Intracellular lipid accumulation—as subjectively observed—was also decreased in muADSCs treated with RAPA. Mice treated with RAPA had reduced overall body weight and reduced size of both intraabdominal and subcutaneous fat pads. When treated with RAPA, mice fed a high fat diet did not develop obesity and were not different from their regular diet controls in terms of body weight. These results suggested that RAPA inhibits adipogenesis and lipogenesis of muADSCs resulting in a prevention of obesity in C57BL/6J mice. This inhibition is strong enough to negate the effects of a high fat diet and seems to act by downregulating the RelA/p65 mTOR signaling pathway—a key component of the NF-κB family.
PMCID: PMC3920817  PMID: 24587943
6.  Infection of Mice, Ferrets, and Rhesus Macaques with a Clinical Mumps Virus Isolate 
Journal of Virology  2013;87(14):8158-8168.
In recent years, many mumps outbreaks have occurred in vaccinated populations worldwide. The reasons for these outbreaks are not clear. Animal models are needed to investigate the causes of outbreaks and to understand the pathogenesis of mumps virus (MuV). In this study, we have examined the infection of three animal models with an isolate of mumps virus from a recent outbreak (MuV-IA). We have found that while both ferrets and mice generated humoral and cellular immune responses to MuV-IA infection, no obvious signs of illness were observed in these animals; rhesus macaques were the most susceptible to MuV-IA infection. Infection of rhesus macaques via both intranasal and intratracheal routes with MuV-IA led to the typical clinical signs of mumps 2 weeks to 4 weeks postinfection. However, none of the infected macaques showed any fever or neurologic signs during the experimental period. Mumps viral antigen was detected in parotid glands by immunohistochemistry (IHC). Rhesus macaques represent the best animal model for the study of mumps virus pathogenesis.
PMCID: PMC3700206  PMID: 23678169
7.  China’s Wetlands: Conservation Plans and Policy Impacts 
Ambio  2012;41(7):782-786.
PMCID: PMC3472011  PMID: 22457078
8.  Contribution of Small RNA Pathway Components in Plant Immunity 
Small RNAs regulate a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity, in a sequence-specific manner. Accumulating evidence reveals that host endogenous small RNAs and small RNA pathway components play important roles in plant immune responses against various pathogens, including bacteria, fungi, oomycetes, and viruses. Small-RNA-mediated defense responses are regulated through diverse pathways and the components of these pathways, including Dicer-like proteins, RNA-dependent RNA polymerases, Argonaute proteins, and RNA polymerase IV and V, exhibit functional specificities as well as redundancy. In this review, we summarize the recent insights revealed mainly through the examination of two model plants, Arabidopsis and rice, with a primary focus on our emerging understanding of how these small RNA pathway components contribute to plant immunity.
PMCID: PMC3752434  PMID: 23489060
9.  Engineered External Guide Sequences Are Highly Effective in Inhibiting Gene Expression and Replication of Hepatitis B Virus in Cultured Cells 
PLoS ONE  2013;8(6):e65268.
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.
PMCID: PMC3680410  PMID: 23776459
10.  Hepatitis C Virus Activates Bcl-2 and MMP-2 Expression through Multiple Cellular Signaling Pathways 
Journal of Virology  2012;86(23):12531-12543.
Hepatitis C virus (HCV) infection is associated with numerous liver diseases and causes serious global health problems, but the mechanisms underlying the pathogenesis of HCV infections remain largely unknown. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3), matrix metalloproteinase-2 (MMP-2), and B-cell lymphoma 2 (Bcl-2) are significantly stimulated in HCV-infected patients. We further show that HCV activates STAT3, MMP-2, Bcl-2, extracellular regulated protein kinase (ERK), and c-Jun N-terminal kinase (JNK) in infected Huh7.5.1 cells. Functional screening of HCV proteins revealed that nonstructural protein 4B (NS4B) is responsible for the activation of MMP-2 and Bcl-2 by stimulating STAT3 through repression of the suppressor of cytokine signaling 3 (SOCS3). Our results also demonstrate that multiple signaling cascades, including several members of the protein kinase C (PKC) family, JNK, ERK, and STAT3, play critical roles in the activation of MMP-2 and Bcl-2 mediated by NS4B. Further studies revealed that the C-terminal domain (CTD) of NS4B is sufficient for the activation of STAT3, JNK, ERK, MMP-2, and Bcl-2. We also show that amino acids 227 to 250 of NS4B are essential for regulation of STAT3, JNK, ERK, MMP-2, and Bcl-2, and among them, three residues (237L, 239S, and 245L) are crucial for this regulation. Thus, we reveal a novel mechanism underlying HCV pathogenesis in which multiple intracellular signaling cascades are cooperatively involved in the activation of two important cellular factors, MMP-2 and Bcl-2, in response to HCV infection.
PMCID: PMC3497616  PMID: 22951829
11.  HCV-Induced miR-21 Contributes to Evasion of Host Immune System by Targeting MyD88 and IRAK1 
PLoS Pathogens  2013;9(4):e1003248.
Upon recognition of viral components by pattern recognition receptors, such as the toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like helicases, cells are activated to produce type I interferon (IFN) and proinflammatory cytokines. These pathways are tightly regulated by the host to prevent an inappropriate cellular response, but viruses can modulate these pathways to proliferate and spread. In this study, we revealed a novel mechanism in which hepatitis C virus (HCV) evades the immune surveillance system to proliferate by activating microRNA-21 (miR-21). We demonstrated that HCV infection upregulates miR-21, which in turn suppresses HCV-triggered type I IFN production, thus promoting HCV replication. Furthermore, we demonstrated that miR-21 targets two important factors in the TLR signaling pathway, myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase 1 (IRAK1), which are involved in HCV-induced type I IFN production. HCV-mediated activation of miR-21 expression requires viral proteins and several signaling components. Moreover, we identified a transcription factor, activating protein-1 (AP-1), which is partly responsible for miR-21 induction in response to HCV infection through PKCε/JNK/c-Jun and PKCα/ERK/c-Fos cascades. Taken together, our results indicate that miR-21 is upregulated during HCV infection and negatively regulates IFN-α signaling through MyD88 and IRAK1 and may be a potential therapeutic target for antiviral intervention.
Author Summary
Hepatitis C virus (HCV), a major cause of chronic hepatitis, end-stage cirrhosis, and hepatocellular carcinoma, has chronically infected 200 million people worldwide and 3–4 million more each year. When triggered by viral infection, host cells produce type I interferon (IFN) and proinflammatory cytokines to antagonize the virus. Despite extensive research, the mechanism underlying HCV immune system evasion remains elusive. Our results provided the first direct evidence that microRNA-21 (miR-21) feedback inhibits type I IFN signaling when cells are challenged with HCV, thus promoting the infection. MicroRNA is a kind of endogenous non-coding small RNA that regulates a wide range of biological processes and participate in innate and adaptive immune responses through complementarily pairing with target mRNA, which can regulate its expression or translation. Currently, miRNAs have intrigued many scientists as potent targets or therapeutic agents for diseases. In our study, the targets of miR-21, myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase 1 (IRAK1), which are important for HCV-induced type I IFN production, have also been found. Moreover, we identified a transcription factor, AP-1, which is partly responsible for miR-21 induction in response to HCV infection. Taken together, our research has provided new insights into understanding the effects of miRNA on host-virus interactions, and revealed a potential therapeutic target for antiviral intervention.
PMCID: PMC3635988  PMID: 23633945
12.  Use of extended curettage with osteotomy and fenestration followed by reconstruction with conservation of muscle insertion in the treatment of Enneking stage II locally aggressive bone tumor of the proximal extremities: resection and treatment of bone tumors 
The purpose of this study was to investigate the clinical efficacy of extended resection with osteotomy, fenestration and conservation of muscle (tendon) insertion in the treatment of bone tumors.
A total of 15 patients with locally aggressive bone tumors (Enneking stage II) in the adjacent muscle (tendon) insertion of the proximal extremity were enrolled in the present study (mean age of 29 years). Extended curettage of lesions with osteotomy, fenestration and/or conservation of muscle (tendon) insertion and internal fixation with a bone graft or bone cement was performed at stage I. Postsurgical brace protection was used for 4 to 12 weeks and the patients were periodically followed-up by X-ray and functional assessment. Recurrence, postsurgical Enneking score and outcome rating were assessed.
Treated cases included 15 patients aged 29 ±7.75 years (range, 18 to 42) with a male to female ratio of 8:7. Six had a femoral tumor and nine had a humeral tumor. These tumors comprised three chondroblastomas, five giant-cell tumors and seven aneurysmal bone cysts. Follow-up for 48 ±12.95 months (range, 25 to 72) revealed that 13 of 15 (87%) patients exhibited no recurrence. Local recurrence was observed in a patient with an aneurysmal bone cyst (nine months) and one with a giant-cell tumor (12 months). Mean Enneking scores were 27 ±4.07 (range, 18 to 29). Except for the patient with the recurrent giant-cell tumor, all patients reported good (13%, 2 out of 15) or very good (80%, 12 out of 15) outcomes. Very good outcomes were reported in 92% of patients (12 out of 13) without recurrence.
The procedures used in this study achieved high clinical efficacy, complete lesion removal, reduced recurrence and good restoration of joint function in patients with primary locally aggressive Enneking stage II bone tumors of the proximal extremities.
PMCID: PMC3618005  PMID: 23497479
Bone tumor; Conservation of muscle insertion; Extended curettage; Proximal extremity; Reconstruction; Resection
13.  Effective Inhibition of Human Immunodeficiency Virus 1 Replication by Engineered RNase P Ribozyme 
PLoS ONE  2012;7(12):e51855.
Using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme. Our results provide the first direct evidence that combined mutations at nucleotide 83 and 340 of RNase P catalytic RNA from Escherichia coli (G83 -> U83 and G340 -> A340) increase the overall efficiency of the ribozyme in cleaving an HIV RNA sequence. Moreover, the variant is more effective in reducing HIV-1 p24 expression and intracellular viral RNA level in cells than the wild type ribozyme. A reduction of about 90% in viral RNA level and a reduction of 150 fold in viral growth were observed in cells that expressed the variant, while a reduction of less than 10% was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered ribozyme variants are effective in inhibiting HIV infection. These results also demonstrate the potential of engineering RNase P ribozymes for anti-HIV application.
PMCID: PMC3530568  PMID: 23300569
14.  A Space-For-Time (SFT) Substitution Approach to Studying Historical Phenological Changes in Urban Environment 
PLoS ONE  2012;7(12):e51260.
Plant phenological records are crucial for predicting plant responses to global warming. However, many historical records are either short or replete with data gaps, which pose limitations and may lead to erroneous conclusions about the direction and magnitude of change. In addition to uninterrupted monitoring, missing observations may be substituted via modeling, experimentation, or gradient analysis. Here we have developed a space-for-time (SFT) substitution method that uses spatial phenology and temperature data to fill gaps in historical records. To do this, we combined historical data for several tree species from a single location with spatial data for the same species and used linear regression and Analysis of Covariance (ANCOVA) to build complementary spring phenology models and assess improvements achieved by the approach. SFT substitution allowed increasing the sample size and developing more robust phenology models for some of the species studied. Testing models with reduced historical data size revealed thresholds at which SFT improved historical trend estimation. We conclude that under certain circumstances both the robustness of models and accuracy of phenological trends can be enhanced although some limitations and assumptions still need to be resolved. There is considerable potential for exploring SFT analyses in phenology studies, especially those conducted in urban environments and those dealing with non-linearities in phenology modeling.
PMCID: PMC3517568  PMID: 23236460
15.  The Effects of Landscape Variables on the Species-Area Relationship during Late-Stage Habitat Fragmentation 
PLoS ONE  2012;7(8):e43894.
Few studies have focused explicitly on the later stages of the fragmentation process, or “late-stage fragmentation”, during which habitat area and patch number decrease simultaneously. This lack of attention is despite the fact that many of the anthropogenically fragmented habitats around the world are, or soon will be, in late-stage fragmentation. Understanding the ecological processes and patterns that occur in late-stage fragmentation is critical to protect the species richness in these fragments. We investigated plant species composition on 152 islands in the Thousand Island Lake, China. A random sampling method was used to create simulated fragmented landscapes with different total habitat areas and numbers of patches mimicking the process of late-stage fragmentation. The response of the landscape-scale species-area relationship (LSAR) to fragmentation per se was investigated, and the contribution of inter-specific differences in the responses to late-stage fragmentation was tested. We found that the loss of species at small areas was compensated for by the effects of fragmentation per se, i.e., there were weak area effects on species richness in landscapes due to many patches with irregular shapes and high variation in size. The study also illustrated the importance of inter-specific differences for responses to fragmentation in that the LSARs of rare and common species were differently influenced by the effects of fragmentation per se. In conclusion, our analyses at the landscape scale demonstrate the significant influences of fragmentation per se on area effects and the importance of inter-specific differences for responses to fragmentation in late-stage fragmentation. These findings add to our understanding of the effects of habitat fragmentation on species diversity.
PMCID: PMC3427301  PMID: 22937120
16.  The V Protein of Mumps Virus Plays a Critical Role in Pathogenesis 
Journal of Virology  2012;86(3):1768-1776.
Mumps virus (MuV) causes an acute infection in humans characterized by a wide array of symptoms ranging from relatively mild manifestations, such as parotitis, to more-severe complications, such as meningitis and encephalitis. Widespread mumps vaccination has reduced mumps incidence dramatically; however, outbreaks still occur in vaccinated populations. The V protein of MuV, when expressed in cell culture, blocks interferon (IFN) expression and signaling and interleukin-6 (IL-6) signaling. In this work, we generated a recombinant MuV incapable of expressing the V protein (rMuVΔV). The rescued MuV was derived from a clinical wild-type isolate from a recent outbreak in the United States (MuVIowa/US/06, G genotype). Analysis of the virus confirmed the roles of V protein in blocking IFN expression and signaling and IL-6 signaling. We also found that the rMuVIowa/US/06ΔV virus induced high levels of IL-6 expression in vitro, suggesting that V plays a role in reducing IL-6 expression. In vivo, the rMuVIowa/US/06ΔV virus was highly attenuated, indicating that the V protein plays an essential role in viral virulence.
PMCID: PMC3264346  PMID: 22090137
17.  Activation of the Ras/Raf/MEK Pathway Facilitates Hepatitis C Virus Replication via Attenuation of the Interferon-JAK-STAT Pathway 
Journal of Virology  2012;86(3):1544-1554.
Hepatitis C virus (HCV) is a major cause of chronic liver diseases worldwide, often leading to the development of hepatocellular carcinoma (HCC). Constitutive activation of the Ras/Raf/MEK pathway is responsible for approximately 30% of cancers. Here we attempted to address the correlation between activation of this pathway and HCV replication. We showed that knockdown of Raf1 inhibits HCV replication, while activation of the Ras/Raf/MEK pathway by V12, a constitutively active form of Ras, stimulates HCV replication. We further demonstrated that this effect is regulated through attenuation of the interferon (IFN)-JAK-STAT pathway. Activation of the Ras/Raf/MEK pathway downregulates the expression of IFN-stimulated genes (ISGs), attenuates the phosphorylation of STAT1/2, and inhibits the expression of interferon (alpha, beta, and omega) receptors 1 and 2 (IFNAR1/2). Furthermore, we observed that HCV infection activates the Ras/Raf/MEK pathway. Thus, we propose that during HCV infection, the Ras/Raf/MEK pathway is activated, which in turn attenuates the IFN-JAK-STAT pathway, resulting in stimulation of HCV replication.
PMCID: PMC3264379  PMID: 22114332
18.  Radius neck-to-humerus trochlea transposition elbow reconstruction after proximal ulnar metastatic tumor resection: case and literature review 
Wide en bloc excision of proximal ulna sections is used to treat traumatic and pathological fractures of the ulna, though poor standardization of clinical treatment often results in long-term failure of such reconstructed biomechanical structures. In order to provide insight into effective ulnar reconstructive treatments, the case of an 80-year-old Chinese Han male presenting with pathological fracture caused by a proximal ulnar metastatic tumor concurrent with metastatic renal cancer complicated by occurrence in the brain and lungs is reported and contrasted with alternative treatment techniques. Wide resectioning of the proximal ulna and reconstruction with local radius neck-to-humerus trochlea transposition resulted in preservation of functionality, sensitivity, and biomechanical integrity after postsurgical immobilization, 6 weeks of passive- and active-assisted flexion, and extension with a hinged brace. The resultant Musculoskeletal Tumor Society rating score was 25 of 30 (83 %). Full sensitivity and mobility of the left hand and elbow (10° to 90° with minimally impaired supination and pronation) was restored with minimal discomfort. No evidence of local recurrence or other pathological complications were observed within a 1-year follow-up period. Efficient reconstruction of osseous and capsuloligamentous structures in the elbow is often accomplished by allografts, prosthesis, and soft tissue reconstruction, though wide variations in risk and prognosis associated with these techniques has resulted in disagreements regarding the most effective standards for clinical treatment. Current findings suggest that radius neck-to-humerus trochlea transposition offers a superior range of elbow movement and fewer complications than similar allograft and prosthetic techniques for patients with multiple metastatic cancers.
PMCID: PMC3464775  PMID: 22800611
Proximal ulna; Metastatic tumor; Reconstructive procedures; Elbow reconstruction; Ulnar reconstruction
19.  The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10 
BMC Immunology  2012;13:15.
Co-infection with human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown.
HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10) mRNA in peripheral blood mononuclear cells (PBMCs). HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production.
HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.
PMCID: PMC3350415  PMID: 22471703
20.  Epigenetic Control of Circadian Clock Operation during Development 
The molecular players of circadian clock oscillation have been identified and extensively characterized. The epigenetic mechanisms behind the circadian gene expression control has also been recently studied, although there are still details to be illucidated. In this review, we briefly summarize the current understanding of the mammalian clock. We also provide evidence for the lack of circadian oscillation in particular cell types. As the circadian clock has intimate interaction with the various cellular functions in different type of cells, it must have plasticity and specicity in its operation within different epigenetic environments. The lack of circadian oscillation in certain cells provide an unique opportunity to study the required epigenetic environment in the cell that permit circadian oscillation and to idenfify key influencing factors for proper clock function. How epigenetic mechansims, including DNA methylaiton and chromatin modifications, participate in control of clock oscillation still awaits future studies at the genomic scale.
PMCID: PMC3335631  PMID: 22567402
21.  Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass 
PLoS ONE  2012;7(3):e32162.
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
PMCID: PMC3302800  PMID: 22427823
22.  Circadian Rhythms of Fetal Liver Transcription Persist in the Absence of Canonical Circadian Clock Gene Expression Rhythms In Vivo 
PLoS ONE  2012;7(2):e30781.
The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture). To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny.
PMCID: PMC3285613  PMID: 22383974
23.  Transcriptome Comparison between Fetal and Adult Mouse Livers: Implications for Circadian Clock Mechanisms 
PLoS ONE  2012;7(2):e31292.
Microarray transcriptome analyses of fetal mouse liver did not detect circadian expression rhythms of clock genes or clock-controlled genes, although some rhythmic transcripts that were likely not driven by endogenous cellular clocks were identified. This finding reveals a key distinction between the circadian oscillators in fetal and adult mouse livers. Thus, in this study, the transcriptomes of fetal and adult livers were systematically compared to identify differences in the gene expression profiles between these two developmental stages. Approximately 1000 transcripts were differentially enriched between the fetal and adult livers. These transcripts represent genes with cellular functions characteristic of distinct developmental stages. Clock genes were also differentially expressed between the fetal and adult livers. Developmental differences in liver gene expression might have contributed to the differences in oscillation status and functional states of the cellular circadian clock between fetal and adult livers.
PMCID: PMC3283632  PMID: 22363607
24.  Transcriptional Repressor NIR Functions in the Ribosome RNA Processing of Both 40S and 60S Subunits 
PLoS ONE  2012;7(2):e31692.
NIR was identified as an inhibitor of histone acetyltransferase and it represses transcriptional activation of p53. NIR is predominantly localized in the nucleolus and known as Noc2p, which is involved in the maturation of the 60S ribosomal subunit. However, how NIR functions in the nucleolus remains undetermined. In the nucleolus, a 47S ribosomal RNA precursor (pre-rRNA) is transcribed and processed to produce 18S, 5.8S and 28S rRNAs. The 18S rRNA is incorporated into the 40S ribosomal subunit, whereas the 28S and 5.8S rRNAs are incorporated into the 60S subunit. U3 small nucleolar RNA (snoRNA) directs 18S rRNA processing and U8 snoRNA mediates processing of 28S and 5.8 S rRNAs. Functional disruption of nucleolus often causes p53 activation to inhibit cell proliferation.
Methodology/Principal Findings
Western blotting showed that NIR is ubiquitously expressed in different human cell lines. Knock-down of NIR by siRNA led to inhibition of the 18S, 28S and 5.8S rRNAs evaluated by pulse-chase experiment. Pre-rRNA particles (pre-rRNPs) were fractionated from the nucleus by sucrose gradient centrifugation and analysis of the pre-RNPs components showed that NIR existed in the pre-RNPs of both the 60S and 40S subunits and co-fractionated with 32S and 12S pre-rRNAs in the 60S pre-rRNP. Protein-RNA binding experiments demonstrated that NIR is associated with the 32S pre-rRNA and U8 snoRNA. In addition, NIR bound U3 snoRNA. It is a novel finding that depletion of NIR did not affect p53 protein level but de-repressed acetylation of p53 and activated p21.
We provide the first evidence for a transcriptional repressor to function in the rRNA biogenesis of both the 40S and 60S subunits. Our findings also suggested that a nucleolar protein may alternatively signal to p53 by affecting the p53 modification rather than affecting p53 protein level.
PMCID: PMC3282729  PMID: 22363708
25.  Epigenetic Changes Mediated by MicroRNA miR29 Activate Cyclooxygenase 2 and Lambda-1 Interferon Production during Viral Infection 
Journal of Virology  2012;86(2):1010-1020.
Lambda-1 interferon (IFN-λ1) and cyclooxygenase-2 (COX-2) were reported to play an important role in host antiviral defense. However, the mechanism by which IFN-λ1 and COX2 are activated and modulated during viral infection remains unclear. In this study, we found that expression of both circulating IFN-λ1 and COX2-derived prostaglandin E2 (PGE2) was coordinately elevated in a cohort of influenza patients compared to healthy individuals. Expression of IFN-λ1 was blocked by a selective COX2 inhibitor during influenza A virus infection in A549 human lung epithelial cells but enhanced by overexpression of COX2, indicating that the production of IFN-λ1 is COX2 dependent. COX2 was able to increase IFN-λ1 expression by promoting NF-κB binding to the enhancer in the IFN-λ1 promoter. We found that epigenetic changes activate COX2 expression and PGE2 accumulation during viral infection. The expression of DNA methyltransferase 3a (DNMT3a) and DNMT3b, but not that of DNMT1, was downregulated following influenza A virus infection in both A549 cells and peripheral blood mononuclear cells (PBMCs). We showed that microRNA miR29 suppresses DNMT activity and thus induces expression of COX2 and PGE2. Furthermore, miR29 expression was elevated 50-fold in virally infected A549 cells and 10-fold in PBMCs from influenza patients, compared to expression after mock infection of A549 cells or in healthy individuals, respectively. Activation of the protein kinase A signaling pathway and phosphorylation of CREB1 also contributed to COX2 expression. Collectively, our work defines a novel proinflammatory cascade in the control of influenza A virus infection.
PMCID: PMC3255816  PMID: 22072783

Results 1-25 (49)