PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians 
Diabetologia  2011;55(4):981-995.
Aims/hypothesis
FTO harbours the strongest known obesity-susceptibility locus in Europeans. While there is growing evidence for a role for FTO in obesity risk in Asians, its association with type 2 diabetes, independently of BMI, remains inconsistent. To test whether there is an association of the FTO locus with obesity and type 2 diabetes, we conducted a meta-analysis of 32 populations including 96,551 East and South Asians.
Methods
All studies published on the association between FTO-rs9939609 (or proxy [r2 > 0.98]) and BMI, obesity or type 2 diabetes in East or South Asians were invited. Each study group analysed their data according to a standardised analysis plan. Association with type 2 diabetes was also adjusted for BMI. Random-effects meta-analyses were performed to pool all effect sizes.
Results
The FTO-rs9939609 minor allele increased risk of obesity by 1.25-fold/allele (p = 9.0 × 10−19), overweight by 1.13-fold/allele (p = 1.0 × 10−11) and type 2 diabetes by 1.15-fold/allele (p = 5.5 × 10−8). The association with type 2 diabetes was attenuated after adjustment for BMI (OR 1.10-fold/allele, p = 6.6 × 10−5). The FTO-rs9939609 minor allele increased BMI by 0.26 kg/m2 per allele (p = 2.8 × 10−17), WHR by 0.003/allele (p = 1.2 × 10−6), and body fat percentage by 0.31%/allele (p = 0.0005). Associations were similar using dominant models. While the minor allele is less common in East Asians (12–20%) than South Asians (30–33%), the effect of FTO variation on obesity-related traits and type 2 diabetes was similar in the two populations.
Conclusions/interpretation
FTO is associated with increased risk of obesity and type 2 diabetes, with effect sizes similar in East and South Asians and similar to those observed in Europeans. Furthermore, FTO is also associated with type 2 diabetes independently of BMI.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-011-2370-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-011-2370-7
PMCID: PMC3296006  PMID: 22109280
Asians; FTO; Meta-analysis; Obesity; Type 2 diabetes
2.  Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs 
Diabetologia  2011;55(2):349-357.
Aims/hypothesis
Evaluation of the association of 31 common single nucleotide polymorphisms (SNPs) with fasting glucose, fasting insulin, HOMA-beta cell function (HOMA-β), HOMA-insulin resistance (HOMA-IR) and type 2 diabetes in the Indian population.
Methods
We genotyped 3,089 sib pairs recruited in the Indian Migration Study from four cities in India (Lucknow, Nagpur, Hyderabad and Bangalore) for 31 SNPs in 24 genes previously associated with type 2 diabetes in European populations. We conducted within-sib-pair analysis for type 2 diabetes and its related quantitative traits.
Results
The risk-allele frequencies of all the SNPs were comparable with those reported in western populations. We demonstrated significant associations of CXCR4 (rs932206), CDKAL1 (rs7756992) and TCF7L2 (rs7903146, rs12255372) with fasting glucose, with β values of 0.007 (p = 0.05), 0.01 (p = 0.01), 0.007 (p = 0.05), 0.01 (p = 0.003) and 0.08 (p = 0.01), respectively. Variants in NOTCH2 (rs10923931), TCF-2 (also known as HNF1B) (rs757210), ADAM30 (rs2641348) and CDKN2A/B (rs10811661) significantly predicted fasting insulin, with β values of −0.06 (p = 0.04), 0.05 (p = 0.05), −0.08 (p = 0.01) and −0.08 (p = 0.02), respectively. For HOMA-IR, we detected associations with TCF-2, ADAM30 and CDKN2A/B, with β values of 0.05 (p = 0.04), −0.07 (p = 0.03) and −0.08 (p = 0.02), respectively. We also found significant associations of ADAM30 (β = −0.05; p = 0.01) and CDKN2A/B (β = −0.05; p = 0.03) with HOMA-β. THADA variant (rs7578597) was associated with type 2 diabetes (OR 1.5; 95% CI 1.04, 2.22; p = 0.03).
Conclusions/interpretation
We validated the association of seven established loci with intermediate traits related to type 2 diabetes in an Indian population using a design resistant to population stratification.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-011-2355-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-011-2355-6
PMCID: PMC3245821  PMID: 22052079
Association; India; Intermediate traits; Polymorphisms; Type 2 diabetes
3.  Mutations in anionic trypsinogen gene are not associated with tropical calcific pancreatitis 
Gut  2005;54(5):728-729.
doi:10.1136/gut.2004.055335
PMCID: PMC1774499  PMID: 15831926
tropical calcific pancreatitis; anionic trypsinogen; trypsinogen; mutation
4.  Absence of PRSS1 mutations and association of SPINK1 trypsin inhibitor mutations in hereditary and non-hereditary chronic pancreatitis 
Gut  2004;53(5):723-728.
Background and aims: Mutations in the cationic trypsinogen (protease, serine, 1 (trypsin 1); PRSS1) gene are causally associated with recurrent acute and chronic pancreatitis. We investigated whether mutations in the PRSS1 gene are associated with hereditary and non-hereditary pancreatitis. As a modifier role has been proposed for trypsin inhibitor (serine protease inhibitor, Kazal type I; SPINK1) mutations, the role of SPINK1 mutations in these patients was also analysed.
Subjects and methods: The coding regions of PRSS1 and SPINK1 genes were sequenced in 290 controls and 198 patients, of whom 120 were diagnosed as idiopathic (ICP), 41 as alcoholic (ACP), and 37 as hereditary pancreatitis (HP). Twenty four unaffected relatives of HP probands were also analysed and genotype-phenotype correlations and statistical analyses were performed.
Results: No mutations in the PRSS1 gene were detected in any of the patients, including HP patients, while the N34S mutation was observed in the SPINK1 gene in the majority of HP patients (73%). Similarly, 26.8% of ACP (11 of 41) and 32.5% (39 of 120) of ICP patients also had SPINK1 mutations. The N34S mutation was observed in both homozygous and heterozygous conditions. In comparison, only 2.76% of the control population had the N34S allele (p<0.001). The P55S mutation was observed in one ICP and one ACP patient, and in three normal individuals. Genotype-phenotype correlations did not suggest any significant difference in the age of onset, severity of disease, or pancreatic endocrine insufficiency in patients with or without mutated SPINK1 and irrespective of the allelic status of N34S SPINK1.
Conclusions: Irrespective of the aetiology, mutations in the PRSS1 gene are not associated with chronic pancreatitis, including HP. In contrast, the N34S mutation in the SPINK1 gene shows a significant correlation in these patients. A comparable phenotype in terms of age of onset, diabetes mellitus, and other phenotypic features in patients with or without SPINK1 mutations and N34S homozygotes and heterozygotes suggests that there may still be involvement of other genetic or environmental factors.
doi:10.1136/gut.2003.026526
PMCID: PMC1774044  PMID: 15082592
cationic trypsinogen gene; chronic pancreatitis; mutations; pancreatic secretory trypsin inhibitor; N34S SPINK1 mutation

Results 1-4 (4)