Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Li, lisun")
1.  The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity 
BMC Plant Biology  2015;15:49.
Rice blast disease is one of the most destructive diseases of rice worldwide. We previously cloned the rice blast resistance gene Pid2, which encodes a transmembrane receptor-like kinase containing an extracellular B-lectin domain and an intracellular serine/threonine kinase domain. However, little is known about Pid2-mediated signaling.
Here we report the functional characterization of the U-box/ARM repeat protein OsPUB15 as one of the PID2-binding proteins. We found that OsPUB15 physically interacted with the kinase domain of PID2 (PID2K) in vitro and in vivo and the ARM repeat domain of OsPUB15 was essential for the interaction. In vitro biochemical assays indicated that PID2K possessed kinase activity and was able to phosphorylate OsPUB15. We also found that the phosphorylated form of OsPUB15 possessed E3 ligase activity. Expression pattern analyses revealed that OsPUB15 was constitutively expressed and its encoded protein OsPUB15 was localized in cytosol. Transgenic rice plants over-expressing OsPUB15 at early stage displayed cell death lesions spontaneously in association with a constitutive activation of plant basal defense responses, including excessive accumulation of hydrogen peroxide, up-regulated expression of pathogenesis-related genes and enhanced resistance to blast strains. We also observed that, along with plant growth, the cell death lesions kept spreading over the whole seedlings quickly resulting in a seedling lethal phenotype.
These results reveal that the E3 ligase OsPUB15 interacts directly with the receptor-like kinase PID2 and regulates plant cell death and blast disease resistance.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-015-0442-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4330927
U-box; E3 ligase; Protein interaction; Blast resistance; Cell death; Rice
2.  Ovarian adipocytokines are associated with early in vitro human embryo development independent of the action of ovarian insulin 
We aimed to characterize the association between levels of serum and follicular fluid (FF) adipocytokines, reflected by the leptin to adiponectin ratio (L:A ratio), and oocyte quality and in vitro embryo development in women undergoing assisted reproduction. We also aimed to assess whether follicular hormonal pathways mediate this interaction.
We prospectively collected FF from up to four individual preovulatory follicles (n = 76) and fasting sera from women (n = 31) without endocrinopathies undergoing in vitro fertilization (IVF) at a university-based center for assisted reproduction. Leptin, total adiponectin, insulin, insulin-like growth factor 1 (IGF-1), and ovarian steriods were measured using enzyme immunoassay. Oocyte maturity, fertilization, and embryo development were assessed.
FF leptin was similar to serum levels while FF adiponectin was lower. FF leptin (27.10 ± 4.05 ng/mL) and the L:A ratio (11.48E−3 ± 2.57E−3) were related to FF insulin (R2 = 0.370 and 0.419, p < 0.001) but not to ovarian steroids or IGF-1, whereas FF adiponectin ( 4.22 ± 0.52 ug/mL) correlated only with leptin (R2 = −0.138, p = 0.001). Oocytes from a high FF L:A ratio environment were 81 % (RR 1.81 [95%CI 0.97–3.37]) more likely to undergo successful cleavage and 117 % (RR 2.17 [95 % CI 1.06–4.44]) more likely to obtain viable cleavage morphology compared to a low FF L:A ratio environment, even when adjusted for FF insulin, an independent predictor of cleavage.
Certain adipocytokines, particularly the L:A ratio in the FF of the preovulatory follicle, are related to successful in vitro embryo development. This action may be independent of FF insulin.
PMCID: PMC3528866  PMID: 23054357
Adipocytokines; Leptin; Adiponectin; Follicular fluid; IVF; Oocyte quality; Embryo development; Steroidogenesis; Insulin
3.  Identification and validation of rice reference proteins for western blotting 
Journal of Experimental Botany  2011;62(14):4763-4772.
Studies of rice protein expression have increased considerably with the development of rice functional genomics. In order to obtain reliable expression results in western blotting, information on appropriate reference proteins is necessary for data normalization. To date, no published study has identified and systematically validated reference proteins suitable for the investigation of rice protein expression. In this study, nine candidate proteins were selected and their specific antibodies were obtained through immunization of rabbits with either recombinant proteins expressed in Escherichia coli or synthesized peptides. Western blotting was carried out to detect the expression of target proteins in a set of 10 rice samples representing different rice tissues/organs at different developmental stages. The expression stability of the proteins was analysed using geNorm and Microcal Origin 6.0 software. The results indicated that heat shock protein (HSP) and elongation factor 1-α (eEF-1α) were the most constantly expressed among all rice proteins tested throughout all developmental stages, while the proteins encoded by conventional internal reference genes fluctuated in amount. Comparison among the profiling of translation and transcription [expressed sequence tags (EST) and massively parallel signature sequencing (MPSS)] revealed that a correlation existed. Based on the standard curves derived from the antigen–antibody reaction, the concentrations of HSP and eEF-1α proteins in rice leaves were ∼0.12%. Under the present experimental conditions, the lower limits of detection for HSP and eEF-1α proteins in rice were 0.24 ng and 0.06 ng, respectively. In conclusion, the reference proteins selected in this study, and the corresponding antibodies, can be used in qualitative and quantitative analysis of rice proteins.
PMCID: PMC3192993  PMID: 21705388
Antibody-based proteomics; rice (Oryza sativa L.); reference gene; reference protein; western blotting

Results 1-3 (3)