Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A Comparison of Loop-Mediated Isothermal Amplification (LAMP) with Other Surveillance Tools for Echinococcus granulosus Diagnosis in Canine Definitive Hosts 
PLoS ONE  2014;9(7):e100877.
Cystic echinococcosis is highly prevalent in northwest China. A cost-effective, easy to operate diagnostic tool with high sensitivity and specificity would greatly facilitate the monitoring of Echinococcus infections in canine definitive hosts.
The primers used in the LAMP assay were based on the mitochondrial nad5 gene of E. granulosus sensu stricto (E. granulosus s.s., or E.g.s.s.) and were designed using Primer Explorer V4 software. The developed LAMP assay was compared with a conventional PCR method, copro-ELISA and microscopy, using the faeces of dogs experimentally infected with E.g.s.s., and field-collected faeces of domestic dogs including 190 from Qinghai province highly endemic for E.g.s.s. and 30 controls from an area in Gansu, where a domestic dog de-worming program was in operation.
The positivity rates obtained for the field-collected faecal samples were 12.6%, 1.6% and 2.1% by the LAMP, PCR and copro-ELISA assays, respectively. All samples obtained from the control dogs were negative. Compared with the conventional PCR, the LAMP assay provided 88.8% specificity and 100% sensitivity. The higher sensitivity of the LAMP method was also shown by the fact that it could detect the presence of laboratory challenge dog infections of E. granulsous s.s. four days earlier than the PCR method. Three copro-samples shown positive by the commercial copro-ELISA were all negative by LAMP, PCR and microscopy, which suggests these samples may have originated from another infection rather than E. granulsous s.s., possibly E. shiquicus or E. Canadensis, which is also present in China.
We have developed a potentially useful surveillance tool for determining the prevalence of canine E. granulosus s.s. infections in the field. The LAMP assay may lead to a more cost-effective and practicable way of tracking Echinococcus infections in canids, especially when combined with the copro-ELISA.
PMCID: PMC4089910  PMID: 25007051
2.  The Mitochondrial Genome of Paramphistomum cervi (Digenea), the First Representative for the Family Paramphistomidae 
PLoS ONE  2013;8(8):e71300.
We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs), a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P. cervi within the Order Plagiorchiida, but relationships depicted within that order were not quite as expected from previous studies. The complete mtDNA sequence of P. cervi provides important genetic markers for diagnostics, ecological and evolutionary studies of digeneans.
PMCID: PMC3750040  PMID: 23990943
3.  Complete Genome Sequence of Streptococcus equi subsp. zooepidemicus Strain ATCC 35246 
Journal of Bacteriology  2011;193(19):5583-5584.
Streptococcus equi subsp. zooepidemicus is an opportunistic pathogen. It has caused a very large economic loss in the swine industry of China and has become a threat to human health. We announce the complete genome sequence of S. equi subsp. zooepidemicus strain ATCC 35246, which provides opportunities to understand its pathogenesis mechanism and genetic basis.
PMCID: PMC3187426  PMID: 21914890
4.  The Genomes of Oryza sativa: A History of Duplications 
Yu, Jun | Wang, Jun | Lin, Wei | Li, Songgang | Li, Heng | Zhou, Jun | Ni, Peixiang | Dong, Wei | Hu, Songnian | Zeng, Changqing | Zhang, Jianguo | Zhang, Yong | Li, Ruiqiang | Xu, Zuyuan | Li, Shengting | Li, Xianran | Zheng, Hongkun | Cong, Lijuan | Lin, Liang | Yin, Jianning | Geng, Jianing | Li, Guangyuan | Shi, Jianping | Liu, Juan | Lv, Hong | Li, Jun | Wang, Jing | Deng, Yajun | Ran, Longhua | Shi, Xiaoli | Wang, Xiyin | Wu, Qingfa | Li, Changfeng | Ren, Xiaoyu | Wang, Jingqiang | Wang, Xiaoling | Li, Dawei | Liu, Dongyuan | Zhang, Xiaowei | Ji, Zhendong | Zhao, Wenming | Sun, Yongqiao | Zhang, Zhenpeng | Bao, Jingyue | Han, Yujun | Dong, Lingli | Ji, Jia | Chen, Peng | Wu, Shuming | Liu, Jinsong | Xiao, Ying | Bu, Dongbo | Tan, Jianlong | Yang, Li | Ye, Chen | Zhang, Jingfen | Xu, Jingyi | Zhou, Yan | Yu, Yingpu | Zhang, Bing | Zhuang, Shulin | Wei, Haibin | Liu, Bin | Lei, Meng | Yu, Hong | Li, Yuanzhe | Xu, Hao | Wei, Shulin | He, Ximiao | Fang, Lijun | Zhang, Zengjin | Zhang, Yunze | Huang, Xiangang | Su, Zhixi | Tong, Wei | Li, Jinhong | Tong, Zongzhong | Li, Shuangli | Ye, Jia | Wang, Lishun | Fang, Lin | Lei, Tingting | Chen, Chen | Chen, Huan | Xu, Zhao | Li, Haihong | Huang, Haiyan | Zhang, Feng | Xu, Huayong | Li, Na | Zhao, Caifeng | Li, Shuting | Dong, Lijun | Huang, Yanqing | Li, Long | Xi, Yan | Qi, Qiuhui | Li, Wenjie | Zhang, Bo | Hu, Wei | Zhang, Yanling | Tian, Xiangjun | Jiao, Yongzhi | Liang, Xiaohu | Jin, Jiao | Gao, Lei | Zheng, Weimou | Hao, Bailin | Liu, Siqi | Wang, Wen | Yuan, Longping | Cao, Mengliang | McDermott, Jason | Samudrala, Ram | Wang, Jian | Wong, Gane Ka-Shu | Yang, Huanming
PLoS Biology  2005;3(2):e38.
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
Comparative genome sequencing of indica and japonica rice reveals that duplication of genes and genomic regions has played a major part in the evolution of grass genomes
PMCID: PMC546038  PMID: 15685292

Results 1-4 (4)