Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Hao, yingling")
1.  Profiles of Acute Cytokine and Antibody Responses in Patients Infected with Avian Influenza A H7N9 
PLoS ONE  2014;9(7):e101788.
The influenza A H7N9 virus outbreak in Eastern China in the spring of 2013 represented a novel, emerging avian influenza transmission to humans. While clinical and microbiological features of H7N9 infection have been reported in the literature, the current study investigated acute cytokine and antibody responses in acute H7N9 infection. Between March 27, 2013 and April 23, 2013, six patients with confirmed H7N9 influenza infection were admitted to Drum Tower Hospital, Nanjing, China. Acute phase serum cytokine profiles were determined using a high-throughput multiplex assay. Daily H7 hemagglutinin (HA)-specific IgG, IgM, and IgA responses were monitored by ELISA. Neutralizing antibodies specific for H7N9 viruses were determined against a pseudotyped virus expressing the novel H7 subtype HA antigen. Five cytokines (IL-6, IP-10, IL-10, IFNγ, and TNFα) were significantly elevated in H7N9-infected patients when compared to healthy volunteers. Serum H7 HA-specific IgG, as well as IgM and IgA responses, were detected within 8 days of disease onset and increased in a similar pattern during acute infection. Neutralizing antibodies developed shortly after the appearance of binding antibody responses and showed similar kinetics as a fraction of the total H7 HA-specific IgG responses. H7N9 infection resulted in hallmark serum cytokine increases, which correlated with fever and disease persistence. The novel finding of simultaneous development of IgG, IgM, and IgA responses in acute H7N9 infection points to the potential for live influenza viruses to elicit fast and potent protective antibodies to limit the infection.
PMCID: PMC4086936  PMID: 25003343
2.  Lewis y Regulate Cell Cycle Related Factors in Ovarian Carcinoma Cell RMG-I in Vitro via ERK and Akt Signaling Pathways 
To investigate the effect of Lewis y overexpression on the expression of proliferation-related factors in ovarian cancer cells.
mRNA levels of cyclins, CDKs, and CKIs were measured in cells before and after transfection with the α1,2-fucosyltransferase gene by real-time PCR, and protein levels of cyclins, CDKs and CKIs were determined in cells before and after gene transfection by Western blot.
Lewis y overexpression led to an increase in both mRNA and protein expression levels of cyclin A, cyclin D1 and cyclin E in ovarian cancer cells, decrease in both mRNA and protein expression levels of p16 and p21, and decrease of p27 at only the protein expression level without change in its mRNA level. There were no differences in proteins and the mRNA levels of CDK2, CDK4 and CDK6 before and after gene transfection. Anti-Lewis y antibody, ERK and PI3K pathway inhibitors PD98059 and LY294002 reduced the difference in cyclin and CKI expression caused by Lewis y overexpression.
Lewis y regulates the expression of cell cycle-related factors through ERK/MAPK and PI3K/Akt signaling pathways to promote cell proliferation.
PMCID: PMC3269723  PMID: 22312289
Lewis(y) antigen; cell cycle; cyclin; cyclin-dependent kinases; cyclin-dependent kinase inhibitors
3.  The Stimulation of IGF-1R Expression by Lewis(y) Antigen Provides a Powerful Development Mechanism of Epithelial Ovarian Carcinoma 
This study aimed to measure and correlate the expression of insulin-like growth factor receptor-1 (IGF-1R) and the Lewis(y) antigen in ovarian cancer cell lines and tissue samples.
Reverse transcriptase PCR (RT-PCR), Western blotting, immunoprecipitation, immunohistochemistry, and immunofluorescence double-labeling techniques were applied to detect and measure the expression of Lewis(y) and IGF-1R.
In α1,2-fucosyltransferase (α1,2-FT)-transfected cells, IGF-1R expression was significantly upregulated compared with cells that do not overexpress α1,2-FT (P < 0.05). The amount of Lewis(y) expressed on IGF-1R increased 1.81-fold in α1,2-FT-overexpressing cells (P < 0.05), but the ratio of Lewis(y) expressed on IGF-1R to total IGF-1R was unaltered between two cells (P > 0.05). In malignant epithelial ovarian tumors, the positivity rates of Lewis(y) and IGF-1R detection were 88.3% and 93.33%, respectively, which is higher than the positivity rates in marginal (60.00% and 63.33%, all P < 0.05), benign (33.00% and 53.33%, all P < 0.01), and normal (0% and 40%, all P < 0.01) ovarian samples. No correlations were detected in positivity rates of Lewis(y) or IGF-1R expression with respect to clinicopathological parameters in ovarian cancers (all P > 0.05). Both IGF-1R and Lewis(y) were highly expressed in ovarian cancer tissues, and their expression levels were positively correlated (P < 0.05).
Overexpression of Lewis(y) results in overexpression of IGF-1R. Both IGF-1R and Lewis(y) are associated with the occurrence and development of ovarian cancers.
PMCID: PMC3211010  PMID: 22072919
epithelial ovarian tumor; Insulin-like growth factor receptor-1; Lewis(y) antigen; immunohistochemistry; immunofluorescence double labeling method
4.  Increase in Docetaxel-Resistance of Ovarian Carcinoma-Derived RMG-1 Cells with Enhanced Expression of Lewis Y Antigen 
Epithelial carcinomas of the ovary exhibit the highest mortality rate among gynecologic malignancies. Studies found that the metabolism of glycolipids or carbohydrates is associated with acquirement of anticancer drug-resistance by cancer cells. This study was to characterize possible involvement of Lewis Y (LeY) antigen in the drug-resistance of cancer cells. We transfected the α1,2-fucosyltransferase gene into human ovarian carcinoma-derived RMG-1 cells and established RMG-1-hFUT cells with enhanced expression of LeY. We determined the effects of docetaxel on the survival of cells by MTT assaying and observed the apoptosis of cells in the presence of docetaxel by flow cytometric analysis and by transmission electron microscopy. Plasma membranes and intracellular granules in RMG-1-hFUT cells were stained with anti-LeY antibody, the intensity of the staining was higher than that in control cells. The RMG-1-hFUT cells exhibited higher resistance to docetaxel than the control cells with regard to the docetaxel concentration and time course. After treatment with 10 μg/mL docetaxel for 72 h, the control cells, but not RMG-1-hFUT, contained abundant positively stained cell debris due to disintegration of the cytoskeleton. On transmission electron microscopy, although the control cells treated with docetaxel as above showed the following morphology, i.e., absence of villi, cells shrunken in size, pyknosis, agglutinated chromatin and cell buds containing nuclei in the process of apoptosis, the RMG-1-hFUT cells showed only agglutinated chromatin and vacuoles in the cytoplasm. In summary, cells with enhanced expression of LeY were shown to acquire docetaxel-resistance, indicating the possible involvement of glycoconjugates in the drug-resistance.
PMCID: PMC3233407  PMID: 22174601
ovarian cancer; Lewis Y antigen; docetaxel; drug resistance
5.  Lewis Y Promotes Growth and Adhesion of Ovarian Carcinoma-Derived RMG-I Cells by Upregulating Growth Factors 
Lewis y (LeY) antigen is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Overexpression of LeY is frequently observed in epithelial-derived cancers and has been correlated to the pathological staging and prognosis. However, the effects of LeY on ovarian cancer are not yet clear. Previously, we transfected the ovarian cancer cell line RMG-I with the α1,2-fucosyltransferase gene to obtain stable transfectants, RMG-I-H, that highly express LeY. In the present study, we examined the proliferation, tumorigenesis, adhesion and invasion of the cell lines with treatment of LeY monoclonal antibody (mAb). Additionally, we examined the expression of TGF-β1, VEGF and b-FGF in xenograft tumors. The results showed that the proliferation and adhesion in vitro were significantly inhibited by treatment of RMG-I-H cells with LeY mAb. When subcutaneously inoculated in nude mice, RMG-I-H cells produced large tumors, while mock-transfected cells RMG-I-C and the parental cells RMG-I produced small tumors. Moreover, the tumor formation by RMG-I-H cells was inhibited by preincubating the cells with LeY mAb. Notably, the expression of TGF-β1, VEGF and b-FGF all increased in RMG-I-H cells. In conclusion, LeY plays an important role in promoting cell proliferation, tumorigenecity and adhesion, and these effects may be related to increased levels of growth factors. The LeY antibody shows potential application in the treatment of LeY-positive tumors.
PMCID: PMC2996800  PMID: 21152298
Lewis y; ovarian cancer; proliferation; tumorigenecity; adhesion; inhibition
6.  Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway 
Lewis y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cell surface. Elevated expression of Lewis y has been found in 75% of ovarian tumor, and the high expression level is correlated to the tumor's pathological staging and prognosis. This study was to investigate the effect and the possible mechanism of Lewis y on the proliferation of human ovarian cancer cells.
We constructed a plasmid encoding α1,2-fucosyltransferase (α1,2-FT) gene and then transfected it into ovarian carcinoma-derived RMG-I cells with lowest Lewis y antigen expression level. Effect of Lewis y on cell proliferation was assessed after transfection. Changes in cell survival and signal transduction were evaluated after α-L-fucosidase, anti-Lewis y antibody and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.
Our results showed that the levels of α1,2-FT gene and Lewis y increased significantly after transfection. The cell proliferation of ovarian carcinoma-derived RMG-I cells sped up as the Lewis y antigen was increased. Both of α-L-fucosidase and anti-Lewis y antibody inhibited the cell proliferation. The phosphorylation level of Akt was apparently elevated in Lewis y-overexpressing cells and the inhibitor of PI3K, LY294002, dramatically inhibited the growth of Lewis y-overexpressing cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different expression of α1,2-FT were attenuated significantly by the monoantibody to Lewis y and by the PI3K inhibitor LY294002.
Increased expression of Lewis y antigen plays an important role in promoting cell proliferation through activating PI3K/Akt signaling pathway in ovarian carcinoma-derived RMG-I cells. Inhibition of Lewis y expression may provide a new therapeutic approach for Lewis y positive ovarian cancer.
PMCID: PMC2806302  PMID: 20003467

Results 1-6 (6)