Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Natural Germacrane Sesquiterpenes Inhibit Osteoclast Formation, Bone Resorption, RANKL-Induced NF-κB Activation, and IκBα Degradation 
Osteolytic bone diseases are commonly presented with enhanced osteoclast formation and bone resorption. Sesquiterpene lactone natural compounds have been found to possess anti-inflammatory and immune-modulation effects. Here, we identified three germacrane sesquiterpenes using computer-based virtual screening for the structural similarity with sesquiterpene lactone, parthenolide. We showed that natural germacrane sesquiterpene compounds A, B, and C inhibit osteoclast formation and bone resorption in a dose-dependent manner, with relative potency compound A > compound C > compound B based on their equimolar concentrations. Mechanistic studies by Luciferase reporter gene assay and Western blot analysis showed that germacrane sesquiterpene compound A inhibits RANKL-induced activation of NF-κB and IκBα degradation. This study reveals that natural germacrane sesquiterpene compounds are inhibitors for osteoclast formation and bone resorption, and provides evidence that naturally-occurring compounds might be beneficial as alternative medicine for the prevention and treatment of osteolysis.
PMCID: PMC4661831  PMID: 26556352
germacrane sesquiterpenes; osteoclastogenesis; bone resorption; RANKL; NF-κB; IκBα
2.  Protein kinase C delta null mice exhibit structural alterations in articular surface, intra-articular and subchondral compartments 
Structural alterations in intra-articular and subchondral compartments are hallmarks of osteoarthritis, a degenerative disease that causes pain and disability in the aging population. Protein kinase C delta (PKC-δ) plays versatile functions in cell growth and differentiation, but its role in the articular cartilage and subchondral bone is not known.
Histological analysis including alcian blue, safranin O staining and fluorochrome labeling were used to reveal structural alterations at the articular cartilage surface and bone–cartilage interface in PKC-δ knockout (KO) mice. The morphology and organization of chondrocytes were studied using confocal microscopy. Glycosaminoglycan content was studied by micromass culture of chondrocytes of PKC-δ KO mice.
We uncovered atypical structural demarcation between articular cartilage and subchondral bone of PKC-δ KO mice. Histology analyses revealed a thickening of the articular cartilage and calcified bone–cartilage interface, and decreased safranin O staining accompanied by an increase in the number of hypertrophic chondrocytes in the articular cartilage of PKC-δ KO mice. Interestingly, loss of demarcation between articular cartilage and bone was concomitant with irregular chondrocyte morphology and arrangement. Consistently, in vivo calcein labeling assay showed an increased intensity of calcein labeling in the interface of the growth plate and metaphysis in PKC-δ KO mice. Furthermore, in vitro culture of chondrocyte micromass showed a decreased alcian blue staining of chondrocyte micromass in the PKC-δ KO mice, indicative of a reduced level of glycosaminoglycan production.
Our data imply a role for PKC-δ in the osteochondral plasticity of the interface between articular cartilage and the osteochondral junction.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-015-0720-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4538913  PMID: 26279273
3.  Epidermal Stem Cells Cultured on Collagen-Modified Chitin Membrane Induce In Situ Tissue Regeneration of Full-Thickness Skin Defects in Mice 
PLoS ONE  2014;9(2):e87557.
A Large scale of full-thickness skin defects is lack of auto-grafts and which requires the engineered skin substitutes for repair and regeneration. One major obstacle in skin tissue engineering is to expand epidermal stem cells (ESCs) and develop functional substitutes. The other one is the scaffold of the ESCs. Here, we applied type I collagen-modified chitin membrane to form collagen-chitin biomimetic membrane (C-CBM), which has been proved to have a great biocompatibility and degraded totally when it was subcutaneously transplanted into rat skin. ESCs were cultured, and the resulting biofilm was used to cover full-thickness skin defects in nude mice. The transplantation of ESCs- collagen- chitn biomimetic membrane (ESCs-C-CBM) has achieved in situ skin regeneration. In nude mice, compared to controls with collagen-chitin biomimetic membrane (C-CBM) only, the ESCs-C-CBM group had significantly more dermatoglyphs on the skin wound 10 w after surgery, and the new skin was relatively thick, red and elastic. In vivo experiments showed obvious hair follicle cell proliferation in the full-thickness skin defect. Stem cell markers examination showed active ESCs in repair and regeneration of skin. The results indicate that the collagen-modified chitin membrane carry with ESCs has successfully regenerated the whole skin with all the skin appendages and function.
PMCID: PMC3917838  PMID: 24516553
4.  Loss of Protein Kinase C-δ Protects against LPS-Induced Osteolysis Owing to an Intrinsic Defect in Osteoclastic Bone Resorption 
PLoS ONE  2013;8(8):e70815.
Bone remodeling is intrinsically regulated by cell signaling molecules. The Protein Kinase C (PKC) family of serine/threonine kinases is involved in multiple signaling pathways including cell proliferation, differentiation, apoptosis and osteoclast biology. However, the precise involvement of individual PKC isoforms in the regulation of osteoclast formation and bone homeostasis remains unclear. Here, we identify PKC-δ as the major PKC isoform expressed among all PKCs in osteoclasts; including classical PKCs (−α, −β and −γ), novel PKCs (−δ, −ε, −η and −θ) and atypical PKCs (−ι/λ and −ζ). Interestingly, pharmacological inhibition and genetic ablation of PKC-δ impairs osteoclastic bone resorption in vitro. Moreover, disruption of PKC-δ activity protects against LPS-induced osteolysis in mice, with osteoclasts accumulating on the bone surface failing to resorb bone. Treatment with the PKC-δ inhibitor Rottlerin, blocks LPS-induced bone resorption in mice. Consistently, PKC-δ deficient mice exhibit increased trabeculae bone containing residual cartilage matrix, indicative of an osteoclast-rich osteopetrosis phenotype. Cultured ex vivo osteoclasts derived from PKC-δ null mice exhibit decreased CTX-1 levels and MARKS phosphorylation, with enhanced formation rates. This is accompanied by elevated gene expression levels of cathepsin K and PKC −α, −γ and −ε, as well as altered signaling of pERK and pcSrc416/527 upon RANKL-induction, possibly to compensate for the defects in bone resorption. Collectively, our data indicate that PKC-δ is an intrinsic regulator of osteoclast formation and bone resorption and thus is a potential therapeutic target for pathological osteolysis.
PMCID: PMC3738588  PMID: 23951014
5.  Influence of endogenous ciliary neurotrophic factor on neural differentiation of adult rat hippocampal progenitors☆ 
Neural Regeneration Research  2013;8(4):301-312.
Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.
PMCID: PMC4107532  PMID: 25206670
neural regeneration; stem cells; spontaneous differentiation; neural progenitor cells; endogenous neurotrophic factors; ciliary neurotrophic factor; regeneration; grants-supported paper; photographs-containing paper; neuroregeneration
6.  Your Relevance Feedback Is Essential: Enhancing the Learning to Rank Using the Virtual Feature Based Logistic Regression 
PLoS ONE  2012;7(12):e50112.
Information retrieval applications have to publish their output in the form of ranked lists. Such a requirement motivates researchers to develop methods that can automatically learn effective ranking models. Many existing methods usually perform analysis on multidimensional features of query-document pairs directly and don't take users' interactive feedback information into account. They thus incur the high computation overhead and low retrieval performance due to an indefinite query expression. In this paper, we propose a Virtual Feature based Logistic Regression (VFLR) ranking method that conducts the logistic regression on a set of essential but independent variables, called virtual features (VF). They are extracted via the principal component analysis (PCA) method with the user's relevance feedback. We then predict the ranking score of each queried document to produce a ranked list. We systematically evaluate our method using the LETOR 4.0 benchmark datasets. The experimental results demonstrate that the proposal outperforms the state-of-the-art methods in terms of the Mean Average Precision (MAP), the Precision at position k (P@k), and the Normalized Discounted Cumulative Gain at position k (NDCG@k).
PMCID: PMC3519476  PMID: 23251359
7.  Resemblance of Symptoms for Major Depression Assessed at Interview versus from Hospital Record Review 
PLoS ONE  2012;7(1):e28734.
Diagnostic information for psychiatric research often depends on both clinical interviews and medical records. Although discrepancies between these two sources are well known, there have been few studies into the degree and origins of inconsistencies.
Principal findings
We compared data from structured interviews and medical records on 1,970 Han Chinese women with recurrent DSM-IV major depression (MD). Correlations were high for age at onset of MD (0.93) and number of episodes (0.70), intermediate for family history (+0.62) and duration of longest episode (+0.43) and variable but generally more modest for individual depressive symptoms (mean kappa = 0.32). Four factors were identified for twelve symptoms from medical records and the same four factors emerged from analysis of structured interviews. Factor congruencies were high but the correlation of factors between interviews and records were modest (i.e. +0.2 to +0.4).
Structured interviews and medical records are highly concordant for age of onset, and the number and length of episodes, but agree more modestly for individual symptoms and symptom factors. The modesty of these correlations probably arises from multiple factors including i) inconsistency in the definition of the worst episode, ii) inaccuracies in self-report and iii) difficulties in coding medical records where symptoms were recorded solely for clinical purposes.
PMCID: PMC3256142  PMID: 22247760
8.  Age at onset of major depressive disorder in Han Chinese women: Relationship with clinical features and family history☆ 
Journal of Affective Disorders  2011;135(1-3):89-94.
Individuals with early-onset depression may be a clinically distinct group with particular symptom patterns, illness course, comorbidity and family history. This question has not been previously investigated in a Han Chinese population.
We examined the clinical features of 1970 Han Chinese women with DSM-IV major depressive disorder (MDD) between 30 and 60 years of age across China. Analysis of linear, logistic and multiple logistic regression models was used to determine the association between age at onset (AAO) with continuous, binary and discrete characteristic clinical features of MDD.
Earlier AAO was associated with more suicidal ideation and attempts and higher neuroticism, but fewer sleep, appetite and weight changes. Patients with an earlier AAO were more likely to suffer a chronic course (longer illness duration, more MDD episodes and longer index episode), increased rates of MDD in their parents and a lower likelihood of marriage. They tend to have higher comorbidity with anxiety disorders (general anxiety disorder, social phobia and agoraphobia) and dysthymia.
Early AAO in MDD may be an index of a more severe, highly comorbid and familial disorder. Our findings indicate that the features of MDD in China are similar to those reported elsewhere in the world.
PMCID: PMC3210897  PMID: 21782247
Major depressive disorder; Age at onset; Symptom; Comorbidity

Results 1-8 (8)