Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A low frequency variant within the GWAS locus of MTNR1B affects fasting glucose concentrations: Genetic risk is modulated by obesity 
Two common variants (rs1387153, rs10830963) in MTNR1B have been reported to have independent effects on fasting blood glucose (FBG) levels with increased risk to type 2 diabetes (T2D) in recent genome-wide association studies (GWAS). In this investigation, we report the association of these two variants, and an additional variant (rs1374645) within the GWAS locus of MTNR1B with FBG, 2h glucose, insulin resistance (HOMA IR), β-cell function (HOMA B), and T2D in our sample of Asian Sikhs from India. Our cohort comprised 2,222 subjects [1,201 T2D, 1,021 controls]. None of these SNPs was associated with T2D in this cohort. Our data also could not confirm association of rs1387153 and rs10830963 with FBG phenotype. However, upon stratifying data according to body mass index (BMI) (low ≤ 25 kg/m2 and high > 25 kg/m2) in normo-glycemic subjects (n= 1,021), the rs1374645 revealed a strong association with low FBG levels in low BMI group (β= −0.073, p=0.002, Bonferoni p= 0.01) compared to the high BMI group (β= 0.015, p=0.50). We also detected a strong evidence of interaction between rs1374645 and BMI with respect to FBG levels (p= 0.002). Our data provide new information about the significant impact of another MTNR1B variant on FBG levels that appears to be modulated by BMI. Future confirmation on independent datasets and functional studies will be required to define the role of this variant in fasting glucose variation.
PMCID: PMC3155734  PMID: 21558052
MTNR1B; Fasting blood glucose; SNP-obesity interaction; Asian Indians
2.  Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians 
Diabetologia  2011;55(4):981-995.
FTO harbours the strongest known obesity-susceptibility locus in Europeans. While there is growing evidence for a role for FTO in obesity risk in Asians, its association with type 2 diabetes, independently of BMI, remains inconsistent. To test whether there is an association of the FTO locus with obesity and type 2 diabetes, we conducted a meta-analysis of 32 populations including 96,551 East and South Asians.
All studies published on the association between FTO-rs9939609 (or proxy [r2 > 0.98]) and BMI, obesity or type 2 diabetes in East or South Asians were invited. Each study group analysed their data according to a standardised analysis plan. Association with type 2 diabetes was also adjusted for BMI. Random-effects meta-analyses were performed to pool all effect sizes.
The FTO-rs9939609 minor allele increased risk of obesity by 1.25-fold/allele (p = 9.0 × 10−19), overweight by 1.13-fold/allele (p = 1.0 × 10−11) and type 2 diabetes by 1.15-fold/allele (p = 5.5 × 10−8). The association with type 2 diabetes was attenuated after adjustment for BMI (OR 1.10-fold/allele, p = 6.6 × 10−5). The FTO-rs9939609 minor allele increased BMI by 0.26 kg/m2 per allele (p = 2.8 × 10−17), WHR by 0.003/allele (p = 1.2 × 10−6), and body fat percentage by 0.31%/allele (p = 0.0005). Associations were similar using dominant models. While the minor allele is less common in East Asians (12–20%) than South Asians (30–33%), the effect of FTO variation on obesity-related traits and type 2 diabetes was similar in the two populations.
FTO is associated with increased risk of obesity and type 2 diabetes, with effect sizes similar in East and South Asians and similar to those observed in Europeans. Furthermore, FTO is also associated with type 2 diabetes independently of BMI.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-011-2370-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3296006  PMID: 22109280
Asians; FTO; Meta-analysis; Obesity; Type 2 diabetes

Results 1-2 (2)