Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Liu, single")
1.  Co-Circulation and Genomic Recombination of Coxsackievirus A16 and Enterovirus 71 during a Large Outbreak of Hand, Foot, and Mouth Disease in Central China 
PLoS ONE  2014;9(4):e96051.
A total of 1844 patients with hand, foot, and mouth disease (HFMD), most of them were children of age 1–3-year-old, in Central China were hospitalized from 2011 to 2012. Among them, 422 were infected with coxsackievirus A16 (CVA16), 334 were infected with enterovirus 71 (EV71), 38 were co-infected with EV71 and CVA16, and 35 were infected with other enteroviruses. Molecular epidemiology analysis revealed that EV71 and CVA16 were detected year-round, but EV71 circulated mainly in July and CVA16 circulated predominantly in November, and incidence of HFMD was reduced in January and February and increased in March. Clinical data showed that hyperglycemia and neurologic complications were significantly higher in EV71-infected patients, while upper respiratory tract infection and C-reactive protein were significantly higher in CVA16-associated patients. 124 EV71 and 80 CVA16 strains were isolated, among them 56 and 68 EV71 strains were C4a and C4b, while 25 and 55 CVA16 strains were B1a and B1b, respectively. Similarity plots and bootscan analyses based on entire genomic sequences revealed that the three C4a sub-genotype EV71 strains were recombinant with C4b sub-genotype EV71 in 2B–2C region, and the three CVA16 strains were recombinant with EV71 in 2A–2B region. Thus, CVA16 and EV71 were the major causative agents in a large HFMD outbreak in Central China. HFMD incidence was high for children among household contact and was detected year-round, but outbreak was seasonal dependent. CVA16 B1b and EV71 C4b reemerged and caused a large epidemic in China after a quiet period of many years. Moreover, EV71 and CVA16 were co-circulated during the outbreak, which may have contributed to the genomic recombination between the pathogens. It should gain more attention as there may be an upward trend in co-circulation of the two pathogens globally and the new role recombination plays in the emergence of new enterovirus variants.
PMCID: PMC4002479  PMID: 24776922
2.  PolyC-Binding Protein 1 Interacts with 5′-Untranslated Region of Enterovirus 71 RNA in Membrane-Associated Complex to Facilitate Viral Replication 
PLoS ONE  2014;9(1):e87491.
Enterovirus 71 (EV71) is one causative agent of hand, foot, and mouth disease (HFMD), which may lead to severe neurological disorders and mortality in children. EV71 genome is a positive single-stranded RNA containing a single open reading frame (ORF) flanked by 5′-untranslated region (5′UTR) and 3′UTR. The 5′UTR is fundamentally important for virus replication by interacting with cellular proteins. Here, we revealed that poly(C)-binding protein 1 (PCBP1) specifically binds to the 5′UTR of EV71. Detailed studies indicated that the RNA-binding K-homologous 1 (KH1) domain of PCBP1 is responsible for its binding to the stem-loop I and IV of EV71 5′UTR. Interestingly, we revealed that PCBP1 is distributed in the nucleus and cytoplasm of uninfected cells, but mainly localized in the cytoplasm of EV71-infected cells due to interaction and co-localization with the viral RNA. Furthermore, sub-cellular distribution analysis showed that PCBP1 is located in ER-derived membrane, in where virus replication occurred in the cytoplasm of EV71-infected cells, suggesting PCBP1 is recruited in a membrane-associated replication complex. In addition, we found that the binding of PCBP1 to 5′UTR resulted in enhancing EV71 viral protein expression and virus production so as to facilitate viral replication. Thus, we revealed a novel mechanism in which PCBP1 as a positive regulator involved in regulation of EV71 replication in the host specialized membrane-associated replication complex, which provides an insight into cellular factors involved in EV71 replication.
PMCID: PMC3906175  PMID: 24489926
3.  Hepatitis C Virus Activates Bcl-2 and MMP-2 Expression through Multiple Cellular Signaling Pathways 
Journal of Virology  2012;86(23):12531-12543.
Hepatitis C virus (HCV) infection is associated with numerous liver diseases and causes serious global health problems, but the mechanisms underlying the pathogenesis of HCV infections remain largely unknown. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3), matrix metalloproteinase-2 (MMP-2), and B-cell lymphoma 2 (Bcl-2) are significantly stimulated in HCV-infected patients. We further show that HCV activates STAT3, MMP-2, Bcl-2, extracellular regulated protein kinase (ERK), and c-Jun N-terminal kinase (JNK) in infected Huh7.5.1 cells. Functional screening of HCV proteins revealed that nonstructural protein 4B (NS4B) is responsible for the activation of MMP-2 and Bcl-2 by stimulating STAT3 through repression of the suppressor of cytokine signaling 3 (SOCS3). Our results also demonstrate that multiple signaling cascades, including several members of the protein kinase C (PKC) family, JNK, ERK, and STAT3, play critical roles in the activation of MMP-2 and Bcl-2 mediated by NS4B. Further studies revealed that the C-terminal domain (CTD) of NS4B is sufficient for the activation of STAT3, JNK, ERK, MMP-2, and Bcl-2. We also show that amino acids 227 to 250 of NS4B are essential for regulation of STAT3, JNK, ERK, MMP-2, and Bcl-2, and among them, three residues (237L, 239S, and 245L) are crucial for this regulation. Thus, we reveal a novel mechanism underlying HCV pathogenesis in which multiple intracellular signaling cascades are cooperatively involved in the activation of two important cellular factors, MMP-2 and Bcl-2, in response to HCV infection.
PMCID: PMC3497616  PMID: 22951829
4.  HCV-Induced miR-21 Contributes to Evasion of Host Immune System by Targeting MyD88 and IRAK1 
PLoS Pathogens  2013;9(4):e1003248.
Upon recognition of viral components by pattern recognition receptors, such as the toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like helicases, cells are activated to produce type I interferon (IFN) and proinflammatory cytokines. These pathways are tightly regulated by the host to prevent an inappropriate cellular response, but viruses can modulate these pathways to proliferate and spread. In this study, we revealed a novel mechanism in which hepatitis C virus (HCV) evades the immune surveillance system to proliferate by activating microRNA-21 (miR-21). We demonstrated that HCV infection upregulates miR-21, which in turn suppresses HCV-triggered type I IFN production, thus promoting HCV replication. Furthermore, we demonstrated that miR-21 targets two important factors in the TLR signaling pathway, myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase 1 (IRAK1), which are involved in HCV-induced type I IFN production. HCV-mediated activation of miR-21 expression requires viral proteins and several signaling components. Moreover, we identified a transcription factor, activating protein-1 (AP-1), which is partly responsible for miR-21 induction in response to HCV infection through PKCε/JNK/c-Jun and PKCα/ERK/c-Fos cascades. Taken together, our results indicate that miR-21 is upregulated during HCV infection and negatively regulates IFN-α signaling through MyD88 and IRAK1 and may be a potential therapeutic target for antiviral intervention.
Author Summary
Hepatitis C virus (HCV), a major cause of chronic hepatitis, end-stage cirrhosis, and hepatocellular carcinoma, has chronically infected 200 million people worldwide and 3–4 million more each year. When triggered by viral infection, host cells produce type I interferon (IFN) and proinflammatory cytokines to antagonize the virus. Despite extensive research, the mechanism underlying HCV immune system evasion remains elusive. Our results provided the first direct evidence that microRNA-21 (miR-21) feedback inhibits type I IFN signaling when cells are challenged with HCV, thus promoting the infection. MicroRNA is a kind of endogenous non-coding small RNA that regulates a wide range of biological processes and participate in innate and adaptive immune responses through complementarily pairing with target mRNA, which can regulate its expression or translation. Currently, miRNAs have intrigued many scientists as potent targets or therapeutic agents for diseases. In our study, the targets of miR-21, myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase 1 (IRAK1), which are important for HCV-induced type I IFN production, have also been found. Moreover, we identified a transcription factor, AP-1, which is partly responsible for miR-21 induction in response to HCV infection. Taken together, our research has provided new insights into understanding the effects of miRNA on host-virus interactions, and revealed a potential therapeutic target for antiviral intervention.
PMCID: PMC3635988  PMID: 23633945
5.  Activation of the Ras/Raf/MEK Pathway Facilitates Hepatitis C Virus Replication via Attenuation of the Interferon-JAK-STAT Pathway 
Journal of Virology  2012;86(3):1544-1554.
Hepatitis C virus (HCV) is a major cause of chronic liver diseases worldwide, often leading to the development of hepatocellular carcinoma (HCC). Constitutive activation of the Ras/Raf/MEK pathway is responsible for approximately 30% of cancers. Here we attempted to address the correlation between activation of this pathway and HCV replication. We showed that knockdown of Raf1 inhibits HCV replication, while activation of the Ras/Raf/MEK pathway by V12, a constitutively active form of Ras, stimulates HCV replication. We further demonstrated that this effect is regulated through attenuation of the interferon (IFN)-JAK-STAT pathway. Activation of the Ras/Raf/MEK pathway downregulates the expression of IFN-stimulated genes (ISGs), attenuates the phosphorylation of STAT1/2, and inhibits the expression of interferon (alpha, beta, and omega) receptors 1 and 2 (IFNAR1/2). Furthermore, we observed that HCV infection activates the Ras/Raf/MEK pathway. Thus, we propose that during HCV infection, the Ras/Raf/MEK pathway is activated, which in turn attenuates the IFN-JAK-STAT pathway, resulting in stimulation of HCV replication.
PMCID: PMC3264379  PMID: 22114332
6.  Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010 
PLoS ONE  2011;6(9):e25287.
Recent outbreaks of human enterovirus 71 (EV71) infection and EV71-associated hand, foot, and mouth disease (HFMD) in China have affected millions and potentially lead to life-threatening complications in newborns. Furthermore, these outbreaks represent a significant global public health issue in the world. Understanding the epidemiology of HFMD and EV71 infection and their transmission patterns in China is essential for controlling outbreaks. However, no studies on the outbreaks of HFMD and EV71 infection in China during 2010 have been reported. In this report, we carried out an epidemiological analysis to study an outbreak of HFMD and EV71 infection in 2010 in the city of Nanchang in the Jiangxi province of People's Republic of China. From April 7 to May 11, 2010, a total of 109 HFMD cases were reported, and in this report the HFMD cases were studied by both epidemiological and laboratory analyses. The epidemiological study indicates that children aged younger than 8 years old represented more than 90% of the reported cases, with the age group of 1–3 years containing the highest number of cases. Laboratory studies detected a high prevalence of EV71 amongst the cases in our study, suggesting EV71 as a common enterovirus found in HFMD cases in Nanchang. Phylogenetic analysis of the sequence of the VP1 region of four EV71 isolates indicated that the Nanchang strains belong to the C4 subgenotype commonly found in China during outbreaks in 2008 but contain distinct variations from these strains. Our study for the first time characterizes the epidemiology of HFMD and EV71 infection in China in 2010 and furthermore, provides the first direct evidence of the genotype of EV71 circulating in Nanchang, China. Our study should facilitate the development of public health measures for the control and prevention of HFMD and EV71 infection in at-risk individuals in China.
PMCID: PMC3182205  PMID: 21980416
7.  The X Protein of Hepatitis B Virus Inhibits Apoptosis in Hepatoma Cells through Enhancing the Methionine Adenosyltransferase 2A Gene Expression and Reducing S-Adenosylmethionine Production* 
The Journal of Biological Chemistry  2011;286(19):17168-17180.
The X protein (HBx) of hepatitis B virus (HBV) is involved in the development of hepatocellular carcinoma (HCC), and methionine adenosyltransferase 2A (MAT2A) promotes the growth of liver cancer cells through altering S-adenosylmethionine homeostasis. Thus, we speculated that a link between HBx and MAT2A may contribute to HCC development. In this study, the effects of HBx on MAT2A expression and cell apoptosis were investigated, and the molecular mechanism by which HBx and MAT2A regulate tumorigenesis was evaluated. Results from immunohistochemistry analyses of 37 pairs of HBV-associated liver cancer tissues/corresponding peritumor tissues showed that HBx and MAT2A are highly expressed in most liver tumor tissues. Our in vitro results revealed that HBx activates MAT2A expression in a dose-dependent manner in hepatoma cells, and such regulation requires the cis-regulatory elements NF-κB and CREB on the MAT2A gene promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) further demonstrated that HBx facilitates the binding of NF-κB and CREB to MAT2A gene promoter. In addition, overexpression of HBx or MAT2A inhibits cell apoptosis, whereas knockdown of MAT2A expression stimulates apoptosis in hepatoma cells. Furthermore, we demonstrated that HBx reduces MAT1A expression and AdoMet production but enhances MAT2β expression. Thus, we proposed that HBx activates MAT2A expression through NF-κB and CREB signaling pathways to reduce AdoMet production, inhibit hepatoma cell apoptosis, and perhaps enhance HCC development. These findings should provide new insights into our understanding how the molecular mechanisms underline the effects of HBV infection on the production of MAT2A and the development of HCC.
PMCID: PMC3089560  PMID: 21247894
Apoptosis; Cancer Tumor Promoter; Chromatin Immunoprecipitation (ChiP); CREB; DNA-Protein Interaction; DNA Viruses; Gene Regulation; Hepatitis Virus; Oncogene; S-Adenosylmethionine (AdoMet)

Results 1-7 (7)