Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Copy Number Variation in CNP267 Region May Be Associated with Hip Bone Size 
PLoS ONE  2011;6(7):e22035.
Osteoporotic hip fracture (HF) is a serious global public health problem associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of key measurable risk factors for HF, independent of bone mineral density (BMD). Hip BS is highly genetically determined, but genetic factors underlying BS variation are still poorly defined. Here, we performed an initial genome-wide copy number variation (CNV) association analysis for hip BS in 1,627 Chinese Han subjects using Affymetrix GeneChip Human Mapping SNP 6.0 Array and a follow-up replicate study in 2,286 unrelated US Caucasians sample. We found that a copy number polymorphism (CNP267) located at chromosome 2q12.2 was significantly associated with hip BS in both initial Chinese and replicate Caucasian samples with p values of 4.73E-03 and 5.66E-03, respectively. An important candidate gene, four and a half LIM domains 2 (FHL2), was detected at the downstream of CNP267, which plays important roles in bone metabolism by binding to several bone formation regulator, such as insulin-like growth factor-binding protein 5 (IGFBP-5) and androgen receptor (AR). Our findings suggest that CNP267 region may be associated with hip BS which might influence the FHL2 gene downstream.
PMCID: PMC3137628  PMID: 21789208
2.  Is GSN Significant for Hip BMD in Female Caucasians? 
Bone  2014;63:69-75.
Low bone mineral density (BMD) is a risk factor of osteoporosis. Osteoporosis is more prevalent in the females than the males. So far, the pathophysiological mechanisms underlying osteoporosis are unclear. Peripheral blood monocytes (PBM) are precursors of bone-resorbing osteoclasts. This study aims to identify PBM-expressed proteins (genes) influencing hip BMD in humans.
We utilized three independent study cohorts (N=34, 29, 40), including premenopausal Caucasians with discordant hip BMD. We studied PBM proteome-wide protein expression profiles in Cohort 1 and identified 57 differentially expressed proteins (DEPs) between low vs. high BMD subjects. One protein gelsolin (GSN), after validation by Western blotting, was subject to follow-up. We compared GSN mRNA level in PBM between low vs. high BMD subjects in Cohorts 2 and 3. We genotyped SNPs across GSN in 2,286 unrelated Caucasians (Cohort 4) and 1,627 Chinese (Cohort 5), and tested association with hip BMD in the females and males, respectively.
We discovered and validated that GSN protein expression level in PBM was down-regulated 3.0-fold in low vs. high BMD subjects (P<0.05). Down-regulation of GSN in PBM in low BMD subjects was also observed at mRNA level in both Cohorts 2 and 3. We identified that SNP rs767770 was significantly associated with hip BMD in female Caucasians (P=0.0003) only. Integrating analyses of the datasets at DNA, RNA, and protein levels from female Caucasians substantiated that GSN is highly significant for hip BMD (P=0.0001).
We conclude that GSN is a significant gene influencing hip BMD in female Caucasians.
PMCID: PMC4127973  PMID: 24607942
Bone mineral density; Monocyte; Gelsolin; Integration analysis
3.  Genome-wide association study identifies HMGN3 locus for spine bone size variation in Chinese 
Human genetics  2011;131(3):463-469.
Bone size (BS) is one of the major risk factors for osteoporotic fractures. BS variation is genetically determined to a substantial degree with heritability over 50%, but specific genes underlying variation of BS are still largely unknown. To identify specific genes for BS in Chinese, initial genome-wide association scan (GWAS) study and follow-up replication study were performed. In initial GWAS study, a group of 12 contiguous single-nucleotide polymorphism (SNP)s, which span a region of ~ 25 kb and locate at the upstream of HMGN3 gene (high-mobility group nucleosomal binding domain 3), achieved moderate association signals for spine BS, with P values ranging from 6.2E–05 to 1.8E–06. In the follow-up replication study, eight of the 12 SNPs were detected suggestive replicate associations with BS in 1,728 unrelated female Caucasians, which have well-known differences from Chinese in ethnic genetic background. The SNPs in the region of HMGN3 gene formed a tightly combined haplotype block in both Chinese and Caucasians. The results suggest that the genomic region containing HMGN3 gene may be associated with spine BS in Chinese.
PMCID: PMC4450081  PMID: 21947420
4.  Multistage genome-wide association meta-analyses identified two new loci for bone mineral density 
Human Molecular Genetics  2013;23(7):1923-1933.
Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 × 10−8) level: 14q24.2 (rs227425, P-value 3.98 × 10−13, SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 × 10−9, CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n = 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis.
PMCID: PMC3943521  PMID: 24249740
5.  Attenuated Monocyte Apoptosis, a New Mechanism for Osteoporosis Suggested by a Transcriptome-Wide Expression Study of Monocytes 
PLoS ONE  2015;10(2):e0116792.
Osteoporosis is caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Monocytes are important to osteoporosis by serving as progenitors of osteoclasts and produce cytokines for osteoclastogenesis.
To identify osteoporosis-related genes, we performed microarray analyses of monocytes using Affymetrix 1.0 ST arrays in 42 (including 16 pre- and 26 postmenopausal) high hip BMD (bone mineral density) vs. 31 (including 15 pre- and 16 postmenopausal) low hip BMD Caucasian female subjects. Here, high vs. low BMD is defined as belonging to top vs. bottom 30% of BMD values in population.
Differential gene expression analysis in high vs. low BMD subjects was conducted in the total cohort as well as pre- and post-menopausal subjects. Focusing on the top differentially expressed genes identified in the total, the pre- and the postmenopausal subjects (with a p <5E-03), we performed replication of the findings in 3 independent datasets of microarray analyses of monocytes (total N = 125).
We identified (in the 73 subjects) and successfully replicated in all the 3 independent datasets 2 genes, DAXX and PLK3. Interestingly, both genes are apoptosis induction genes and both down-regulated in the low BMD subjects. Moreover, using the top 200 genes identified in the meta-analysis across all of the 4 microarray datasets, GO term enrichment analysis identified a number of terms related to induction of apoptosis, for which the majority of component genes are also down-regulated in the low BMD subjects. Overall, our result may suggest that there might be a decreased apoptosis activity of monocytes in the low BMD subjects.
Our study for the first time suggested a decreased apoptosis rate (hence an increased survival) of monocytes, an important osteoclastogenic cell, as a novel mechanism for osteoporosis.
PMCID: PMC4319757  PMID: 25659073
6.  SNP rs6265 Regulates Protein Phosphorylation and Osteoblast Differentiation and Influences BMD in Humans 
Bone Mineral Density (BMD) is major index for diagnosing osteoporosis. PhosSNPs are non-synonymous SNPs that affect protein phosphorylation. The relevance and significance of phosSNPs to BMD and osteoporosis is unknown. This study aims to identify and characterize phosSNPs significant for BMD in humans. We conducted a pilot genome-wide phosSNP association study for BMD in three independent population samples, involving ~5,000 unrelated individuals. We identified and replicated three phosSNPs associated with both spine BMD and hip BMD in Caucasians. Association with hip BMD for one of these phosSNPs, i.e., rs6265 (major/minor allele: G/A) in BDNF gene, was also suggested in Chinese. Consistently in both ethnicities, individuals carrying AA genotype have significant lower hip BMD than carriers of GA and GG genotypes. Through in vitro molecular and cellular studies, we found that compared to osteoblastic cells transfected with wild-type BDNF-Val66 (encoded with allele G at rs6265), transfection of variant BDNF-Met66 (encoded with allele A at rs6265) significantly decreased BDNF protein phosphorylation (at amino acid residue T62), expression of osteoblastic genes (OPN, BMP2, and ALP), and osteoblastic activity. The findings are consistent with and explain our prior observations in general human populations. We conclude that phosSNP rs6265, via regulating BDNF protein phosphorylation and osteoblast differentiation, influence hip BMD in humans. This study represents our first endeavor to dissect the functions of phosSNPs in bone, which might stimulate extended large-scale studies on bone or similar studies on other human complex traits and diseases.
PMCID: PMC4127979  PMID: 23712400
BMD; SNP; protein phosphorylation; BDNF; osteoblast
7.  Genome-Wide Association Study Identified UQCC Locus for Spine Bone Size in Humans 
Bone  2012;53(1):129-133.
Bone size (BS) contributes significantly to the risk of osteoporotic fracture. Osteoporotic spine fracture is one of the most disabling outcomes of osteoporosis. This study aims to identify genomic loci underlying spine BS variation in humans.
We performed a genome-wide association scan in 2,286 unrelated Caucasians using Affymetrix 6.0 SNP arrays. Areal BS (cm2) at lumbar spine was measured using dual energy X-ray absorptiometry scanners. SNPs of interest were subjected to replication analyses and meta-analyses with additional two independent Caucasian populations (N = 1,000 and 2,503) and one Chinese population (N = 1,627).
In the initial GWAS, 91 SNPs were associated with spine BS (P<1.0E-4). Eight contiguous SNPs were found clustering in a haplotype block within UQCC gene (ubiquinol-cytochrome creductase complex chaperone). Association of the above eight SNPs with spine BS were replicated in one Caucasian and one Chinese populations. Meta-analyses (N = 7,416) generated much stronger association signals for these SNPs (e.g., P = 1.86E-07 for SNP rs6060373), supporting association of UQCC with spine BS across ethnicities.
This study identified a novel locus, i.e., the UQCC gene, for spine BS variation in humans. Future functional studies will contribute to elucidating the mechanisms by which UQCC regulates bone growth and development.
PMCID: PMC3682469  PMID: 23207799
Spine bone size; GWAS; UQCC
8.  Mitochondria-wide Association Study of Common Variants in Osteoporosis 
Annals of human genetics  2011;75(5):569-574.
Many lines of evidence suggest that mitochondrial DNA (mtDNA) variants are involved in the pathogenesis of human complex diseases, especially for age-related disorders. Osteoporosis is a typical age-related complex disease. However, the role of mtDNA variants in the susceptibility of osteoporosis is largely unknown. In this study, we performed a mitochondria-wide association study for osteoporosis in Caucasians. A total of 445 mitochondrial single nucleotide polymorphisms (mtSNPs) were genotyped in a large sample of 2,286 unrelated Caucasian subjects by using the Affymetrix Genome-Wide SNP Array 6.0, and 72 mtSNPs survived the quality control. We first tested for association between single-mtSNP and bone mineral density (BMD), and identified that, a mtSNP within the NADH dehydrogenase 2 gene (ND2), mt4823 C/A polymorphism, was strongly associated with hip BMD (P = 2.05 × 10−4), even after conservative Bonferroni correction‥ The C allele of mt4823 was associated with reduced hip BMD and the effect size (β) was estimated to be ~0.044. Another SNP mt15885 within the Cytochrome b gene (Cytb) was found to be associated both with spine (P = 1.66×10−3) and hip BMD (P = 0.023). The T allele of mt15885 had a protective effect on spine (β = 0.064) and hip BMD (β = 0.038). Next, we classified subjects into the nine common European haplogroups and conducted association analyses. Subjects classified as haplogroup X had significantly lower mean hip BMD values than others (P = 0.040). Our results highlighted the importance of mtDNA variants in influencing BMD variation and risk to osteoporosis.
PMCID: PMC3155639  PMID: 21762117
mtSNP; haplogroup; osteoporosis; BMD; association
9.  Pathway-Based Association Analyses Identified TRAIL Pathway for Osteoporotic Fractures 
PLoS ONE  2011;6(7):e21835.
Hip OF carries the highest morbidity and mortality. Previous studies revealed that individual genes/loci in the Tumor Necrosis Factor (TNF) -Related Apoptosis-Inducing Ligand (TRAIL) pathway were associated with bone metabolism. This study aims to verify the potential association between hip OF and TRAIL pathway.
Using genome-wide genotype data from Affymetrix 500 K SNP arrays, we performed novel pathway-based association analyses for hip OF in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls).
The TRAIL pathway achieved a significant p value (p = 0.01) for association with hip OF. Among the 38 genes in the TRAIL pathway, seven genes achieved nominally significant association with hip OF (p<0.05); the TNFSF10 (TRAIL) gene obtained the most significant p value (p = 1.70×10−4). SNPs (rs719126, rs6533015, rs9594738, rs1805034, rs11160706) from five genes (CFLAR, NFKB1, TNFSF11, TNFRSF11A, TRAF3) of the pathway had minor alleles that appear to be protective to hip OF. SNPs (rs6445063 and rs4259415) from two genes (TNFSF10 and TNFRSF10B) of the pathway had minor alleles (A) that are associated with an increased risk of hip OF, with the ORs (odds ratios) of 16.51 (95%CI:3.83–71.24) and 1.37 (95%CI:1.08–1.74), respectively.
Our study supports the potential role of the TRAIL pathway in the pathogenesis of hip OF in Chinese Han population. Further functional study of this pathway will be pursued to determine the mechanism by which it confers risk to hip OF.
PMCID: PMC3132733  PMID: 21760914
10.  Pathway-Based Genome-Wide Association Analysis Identified the Importance of Regulation-of-Autophagy Pathway for Ultradistal Radius BMD 
Journal of Bone and Mineral Research  2010;25(7):1572-1580.
Wrist fracture is not only one of the most common osteoporotic fractures but also a predictor of future fractures at other sites. Wrist bone mineral density (BMD) is an important determinant of wrist fracture risk, with high heritability. Specific genes underlying wrist BMD variation are largely unknown. Most published genome-wide association studies (GWASs) have focused only on a few top-ranking single-nucleotide polymorphisms (SNPs)/genes and considered each of the identified SNPs/genes independently. To identify biologic pathways important to wrist BMD variation, we used a novel pathway-based analysis approach in our GWAS of wrist ultradistal radius (UD) BMD, examining approximately 500,000 SNPs genome-wide from 984 unrelated whites. A total of 963 biologic pathways/gene sets were analyzed. We identified the regulation-of-autophagy (ROA) pathway that achieved the most significant result (p = .005, qfdr = 0.043, pfwer = 0.016) for association with UD BMD. The ROA pathway also showed significant association with arm BMD in the Framingham Heart Study sample containing 2187 subjects, which further confirmed our findings in the discovery cohort. Earlier studies indicated that during endochondral ossification, autophagy occurs prior to apoptosis of hypertrophic chondrocytes, and it also has been shown that some genes in the ROA pathway (e.g., INFG) may play important roles in osteoblastogenesis or osteoclastogenesis. Our study supports the potential role of the ROA pathway in human wrist BMD variation and osteoporosis. Further functional evaluation of this pathway to determine the mechanism by which it regulates wrist BMD should be pursued to provide new insights into the pathogenesis of wrist osteoporosis. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153999  PMID: 20200951
osteoporosis; bone mineral density; genome-wide association; regulation of autophagy; whites
11.  Genetic Association Study of Common Mitochondrial Variants on Body Fat Mass 
PLoS ONE  2011;6(6):e21595.
Mitochondria play a central role in ATP production and energy metabolism. Previous studies suggest that common variants in mtDNA are associated with several common complex diseases, including obesity. To test the hypothesis that common mtDNA variants influence obesity-related phenotypes, including BMI and body fat mass, we genotyped a total of 445 mtSNPs across the whole mitochondrial genome in a large sample of 2,286 unrelated Caucasian subjects. 72 of these 445 mtSNPs passed quality control criteria, and were used for subsequent analyses. We also classified all subjects into nine common European haplogroups. Association analyses were conducted for both BMI and body fat mass with single mtSNPs and mtDNA haplogroups. Two mtSNPs, mt4823 and mt8873 were detected to be significantly associated with body fat mass, with adjusted P values of 4.94×10-3 and 4.58×10-2, respectively. The minor alleles mt4823 C and mt8873 A were associated with reduced fat mass values and the effect size (β) was estimated to be 3.52 and 3.18, respectively. These two mtSNPs also achieved nominally significant levels for association with BMI. For haplogroup analyses, we found that haplogroup X was strongly associated with both BMI (adjusted P = 8.31×10-3) and body fat mass (adjusted P = 5.67×10-4) Subjects classified as haplogroup X had lower BMI and fat mass values, with the β estimated to be 2.86 and 6.03, respectively. Our findings suggest that common variants in mitochondria might play a role in variations of body fat mass. Further molecular and functional studies will be needed to clarify the potential mechanism.
PMCID: PMC3126834  PMID: 21747914
12.  Genome-Wide Association Study for Femoral Neck Bone Geometry 
Poor femoral neck bone geometry at the femur is an important risk factor for hip fracture. We conducted a genome-wide association study (GWAS) of femoral neck bone geometry, examining approximately 379,000 eligible single-nucleotide polymorphisms (SNPs) in 1000 Caucasians. A common genetic variant, rs7430431 in the receptor transporting protein 3 (RTP3) gene, was identified in strong association with the buckling ratio (BR, P = 1.6 × 10−7), an index of bone structural instability, and with femoral cortical thickness (CT, P = 1.9 × 10−6). The RTP3 gene is located in 3p21.31, a region that we found to be linked with CT (LOD = 2.19, P = 6.0 × 10−4) in 3998 individuals from 434 pedigrees. The replication analyses in 1488 independent Caucasians and 2118 Chinese confirmed the association of rs7430431 to BR and CT (combined P = 7.0 × 10−3 for BR and P = 1.4 × 10−2 for CT). In addition, 350 hip fracture patients and 350 healthy control individuals were genotyped to assess the association of the RTP3 gene with the risk of hip fracture. Significant association between a nearby common SNP, rs10514713 of the RTP3 gene, and hip fracture (P = 1.0 × 10−3) was found. Our observations suggest that RTP3 may be a novel candidate gene for femoral neck bone geometry. © 2010 American Society for Bone and Mineral Research
PMCID: PMC3153387  PMID: 20175129
genome-wide association; femoral neck bone geometry; bone fracture; RTP3
13.  Gene Expression Profiling in Monocytes and SNP Association Suggest the Importance of the Gene for Osteoporosis in Both Chinese and Caucasians 
Osteoporosis is characterized mainly by low bone mineral density (BMD). Many cytokines and chemokines have been related with bone metabolism. Monocytes in the immune system are important sources of cytokines and chemokines for bone metabolism. However, no study has investigated in vivo expression of a large number of various factors simultaneously in human monocytes underlying osteoporosis. This study explored the in vivo expression pattern of general cytokines, chemokines, and their receptor genes in human monocytes and validated the significant genes by qRT-PCR and genetic association analyses. Expression profilings were performed in monocyte samples from 26 Chinese and 20 Caucasian premenopausal women with discordant BMD. Genome-wide association analysis with BMD variation was conducted in 1000 unrelated Caucasians. We selected 168 cytokines, chemokines, osteoclast-related factors, and their receptor genes for analyses. Significantly, the signal transducer and activator of transcription 1 (STAT1) gene was upregulated in the low versus the high BMD groups in both Chinese and Caucasians. We also revealed a significant association of the STAT1 gene with BMD variation in the 1000 Caucasians. Thus we conclude that the STAT1 gene is important in human circulating monocytes in the etiology of osteoporosis. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153389  PMID: 19594299
STAT1; bmd; monocytes; osteoporosis; microarray; SNP
14.  Impact of female cigarette smoking on circulating B cells in vivo: the suppressed ICOSLG, TCF3, and VCAM1 gene functional network may inhibit normal cell function 
Immunogenetics  2010;62(4):237-251.
As pivotal immune guardians, B cells were found to be directly associated with the onset and development of many smoking-induced diseases. However, the in vivo molecular response of B cells underlying the female cigarette smoking remains unknown. Using the genome-wide Affymetrix HG-133A GeneChip® microarray, we firstly compared the gene expression profiles of peripheral circulating B cells between 39 smoking and 40 non-smoking healthy US white women. A total of 125 differential expressed genes were identified in our study, and 75.2% of them were down-regulated in smokers. We further obtained genotypes of 702 single nucleotide polymorphisms in those promising genes and assessed their associations with smoking status. Using a novel multicriteria evaluation model integrating information from microarray and the association studies, several genes were further revealed to play important roles in the response of smoking, including ICOSLG (CD275, inducible T-cell co-stimulator ligand), TCF3 (E2A immunoglobulin enhancer binding factors E12/E47), VCAM1 (CD106, vascular cell adhesion molecule 1), CCR1 (CD191, chemokine C-C motif receptor 1) and IL13 (interleukin 13). The differential expression of ICOSLG (p = 0.0130) and TCF3 (p = 0.0125) genes between the two groups were confirmed by realtime reverse transcription PCR experiment. Our findings support the functional importance of the identified genes in response to the smoking stimulus. This is the first in vivo genome-wide expression study on B cells at today’s context of high prevalence rate of smoking for women. Our results highlight the potential usage of integrated analyses for unveiling the novel pathogenesis mechanism and emphasized the significance of B cells in the etiology of smoking-induced disease.
PMCID: PMC2925024  PMID: 20217071
Cigarette smoking; B cells; Microarray; Genome-wide; Association
15.  Genome-wide association study identifies two novel loci containing FLNB and SBF2 genes underlying stature variation 
Human Molecular Genetics  2008;18(9):1661-1669.
Human stature, as an important physical index in clinical practice and a usual covariate in gene mapping of complex disorders, is a highly heritable complex trait. To identify specific genes underlying stature, a genome-wide association study was performed in 1000 unrelated homogeneous Caucasian subjects using Affymetrix 500K arrays. A group of seven contiguous markers in the region of SBF2 gene (Set-binding factor 2) are associated with stature, significantly so at the genome-wide level after false discovery rate (FDR) correction (FDR q = 0.034–0.042). Three SNPs in another SNP group in the Filamin B (FLNB) gene were also associated with stature, significantly so with FDR q = 0.042–0.048. In follow-up independent replication studies, rs10734652 in the SBF2 gene was significantly (P = 0.036) and suggestively (P = 0.07) associated with stature in Caucasian families and 1306 unrelated Caucasian subjects, respectively, and rs9834312 in the FLNB gene was also associated with stature in such two independent Caucasian populations (P = 0.008 in unrelated sample and P = 0.049 in family sample). Particularly, additional significant replication association signals were detected in Chinese, an ethnic population different from Caucasian, between rs9834312 and stature in 619 unrelated northern Chinese subjects (P = 0.017), as well as between rs10734652 and stature in 2953 unrelated southern Chinese subjects (P = 0.048). This study also provides additional replication evidence for some of the already published stature loci. These results, together with the known functional relevance of the SBF2 and FLNB genes to skeletal linear growth and bone formation, support that two regions containing FLNB and SBF2 genes are two novel loci underlying stature variation.
PMCID: PMC2667283  PMID: 19039035
16.  Genome-wide Association Analyses Suggested a Novel Mechanism for Smoking Behavior Regulated by IL15 
Molecular psychiatry  2009;14(7):668-680.
Cigarette smoking is the leading preventable cause of death in the US. Although smoking behavior has a significant genetic determination, the specific genes and associated mechanisms underlying smoking behavior are largely unknown. Here, we performed a genome-wide association study on smoking behavior in 840 Caucasians, including 417 males and 423 females, in which we examined ∼380,000 SNPs. We found that a cluster of nine SNPs upstream from the IL15 gene were associated with smoking status in males, with the most significant SNP, rs4956302, achieving a p value (8.80×10−8) of genome-wide significance. Another SNP, rs17354547, that is highly conserved across multiple species, achieved a p value of 5.65×10−5. These two SNPs, together with two additional SNPs (rs1402812 and rs4956396) were selected from the above nine SNPs for replication in an African-American sample containing 1,251 subjects, including 412 males and 839 females. The SNP rs17354547 was successfully replicated in the male subgroup of the replication sample; it was associated with smoking quantity (SQ), the Heaviness of Smoking Index (HSI) and the Fagerstrom Test for Nicotine Dependence (FTND), with p values of 0.031, 0.0046 and 0.019, respectively. In addition, a haplotype formed by rs17354547, rs1402812 and rs4956396 was also associated with SQ, HSI and FTND, achieving p values of 0.039, 0.0093 and 0.0093, respectively. To further confirm our findings, we performed an in silico replication study of the nine SNPs in a Framingham Heart Study sample containing 7,623 Caucasians from 1,731 families, among which, 3,491 subjects are males and 4,132 are females. Again, male-specific association with smoking status was observed, for which seven of the nine SNPs achieved significant p values (p<0.05) and two achieved marginally significant p values (p<0.10) in males. Several of the nine SNPs, including the highly conserved one across species, rs17354547, are located at potential transcription factor binding sites, suggesting transcription regulation as a possible function for these SNPs. Through this function, the SNPs may modulate gene expression of IL15, a key cytokine regulating immune function. As the immune system has long been recognized to influence drug addiction behavior, our association findings suggest a novel mechanism for smoking addiction involving immune modulation via the IL15 pathway.
PMCID: PMC2700850  PMID: 19188921
smoking; nicotine addiction; IL15; genomewide association; genetics
17.  Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density 
Proteomics  2008;8(20):4259-4272.
Osteoporosis (OP) is a major public health problem, mainly characterized by low bone mineral density (BMD). Circulating monocytes (CMCs) may serve as progenitors of osteoclasts and produce a wide variety of factors important to bone metabolism. However, the specific action mechanism of CMCs in the pathogenesis of OP is far from clear. We performed a comparative protein expression profiling study of CMCs in Chinese premenopausal females with extremely discordant BMD, identified a total of 38 differentially expressed proteins, and confirmed with Western blotting five proteins: ras suppressor protein1 (RSU1), gelsolin (GSN), manganese-containing superoxide dismutase (SOD2), glutathione peroxidase 1(GPX1), and prolyl 4-hydroxylase β subunit (P4HB). These proteins might affect CMCs’ trans-endothelium, differentiation, and/or downstream osteoclast functions, thus contribute to differential osteoclastogenesis and finally lead to BMD variation. The findings promote our understanding of the role of CMCs in BMD determination, and provide an insight into the pathogenesis of human OP.
PMCID: PMC2760933  PMID: 18924182
Bone mineral density; Circulating monocyte; Osteoclastogenesis; Protein
18.  Powerful Bivariate Genome-Wide Association Analyses Suggest the SOX6 Gene Influencing Both Obesity and Osteoporosis Phenotypes in Males 
PLoS ONE  2009;4(8):e6827.
Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically.
Principal Findings
To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat.
Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.
PMCID: PMC2730014  PMID: 19714249
19.  Genome-wide association scan for stature in Chinese: evidence for ethnic specific loci 
Human genetics  2008;125(1):1-9.
In Caucasian, several studies have identified some common variants associated with human stature variation. However, no such study was performed in Chinese, which is the largest population in the world and evidently differs from Caucasian in genetic background. To identify common or ethnic specific genes for stature in Chinese, an initial GWAS and follow-up replication study were performed. Our initial GWAS study found that a group of 13 contiguous SNPs, which span a region of ∼150 kb containing two neighboring genes, zinc finger protein (ZNP) 510 and ZNP782, achieved strong signals for association with stature, with P values ranging from 9.71 × 10−5 to 3.11 × 10−6. After false discovery rate correction for multiple testing, 9 of the 13 SNPs remain significant (FDR q = 0.036–0.046). The follow-up replication study in an independent 2,953 unrelated southern Chinese confirmed the association of rs10816533 with stature (P = 0.029). All the13 SNPs were in consistently strong linkage disequilibrium (D′ > 0.99) and formed a single perfect haplotype block. The minor allele frequencies for the 13 contiguous SNPs have evidently ethnic difference, which range from 0.21 to 0.33 in Chinese but have as low as ∼0.017 reported in dbSNP database in Caucasian. The present results suggest that the genomic region containing the ZNP510 and ZNP782 genes is an ethnic specific locus associated with stature variation in Chinese.
PMCID: PMC2730511  PMID: 19030899
20.  Genome-Wide Association Analyses Identify SPOCK as a Key Novel Gene Underlying Age at Menarche 
PLoS Genetics  2009;5(3):e1000420.
For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects—all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09×10−3 and 4.37×10−3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19×10−5 and 1.02×10−4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM.
Author Summary
Menarche is a physical milestone in a woman's life. Age at menarche (AAM) is related to many common female health problems. AAM is mainly determined by genetic factors. However, the specific genes and the associated mechanisms underlying AAM are largely unknown. Here, taking advantage of the most recent technological advances in the field of human genetics, we identified multiple genetic variants in a gene, SPOCK, which are associated with AAM variation in a group of Caucasian women. This association was subsequently confirmed not only in two independent groups of Caucasian women but also across ethnic boundaries in one group of Chinese women. In addition, SPOCK has a function in regulating a key factor involved in menstrual cycles, MMP-2, which provides further support to our findings. Our study provides a solid basis for further investigation of the gene, which may help to reveal the underlying mechanisms for the timing of menarche and for AAM's relationship with women's health in general.
PMCID: PMC2652107  PMID: 19282985
22.  Identification of PLCL1 Gene for Hip Bone Size Variation in Females in a Genome-Wide Association Study 
PLoS ONE  2008;3(9):e3160.
Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF) that are associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS) of hip BS interrogating ∼380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1), that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72×10−7. The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62×10−3 and 2.44×10−3, respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10−5 in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only ∼0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412), achieved a p value of 7.66×10−3 (odds ratio = 0.26) for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate)-mediated calcium signaling, an important pathway regulating mechanical sensing of bone cells. Our findings suggest that PLCL1 is a novel gene associated with variation in hip BS, and provide new insights into the pathogenesis of HF.
PMCID: PMC2522269  PMID: 18776929

Results 1-22 (22)