PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Liu, xiangyun")
1.  Protective Efficacy of Vitamins C and E on p,p′-DDT-Induced Cytotoxicity via the ROS-Mediated Mitochondrial Pathway and NF-κB/FasL Pathway 
PLoS ONE  2014;9(12):e113257.
Dichlorodiphenoxytrichloroethane (DDT) is a known persistent organic pollutant and liver damage toxicant. However, there has been little emphasis on the mechanism underlying liver damage toxicity of DDT and the relevant effective inhibitors. Hence, the present study was conducted to explore the protective effects of vitamin C (VC) and vitamin E (VE) on the cytotoxicity of DDT in HL-7702 cells and elaborate the specific molecular mechanisms. The results demonstrated that p,p′-DDT exposure at over 10 µM depleted cell viability of HL-7702 cells and led to cell apoptotic. p,p′-DDT treatment elevated the level of reactive oxygen species (ROS) generation, induced mitochondrial membrane potential, and released cytochrome c into the cytosol, with subsequent elevations of Bax and p53, along with suppression of Bcl-2. In addition, the activations of caspase-3 and -8 were triggered. Furthermore, p,p′-DDT promoted the expressions of NF-κB and FasL. When the cells were exposed to the NF-κB inhibitor (PDTC), the up-regulated expression of FasL was attenuated. Strikingly, these alterations caused by DDT treatment were prevented or reversed by the addition of VC or VE, and the protective effects of co-treatment with VC and VE were higher than the single supplement with p,p′-DDT. Taken together, these findings provide novel experimental evidences supporting that VC or/and VE could reduce p,p′-DDT-induced cytotoxicity of HL-7702 cells via the ROS-mediated mitochondrial pathway and NF-κB/FasL pathway.
doi:10.1371/journal.pone.0113257
PMCID: PMC4252254  PMID: 25464339
2.  Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis 
Arthritis Research & Therapy  2010;12(6):R210.
Introduction
Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated.
Methods
The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor β1 (TGF-β1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored.
Results
In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-β1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-β1 and NO and UC-MSCs could promote the expansion of CD4+ Foxp3+ regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-α, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA.
Conclusions
In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.
doi:10.1186/ar3187
PMCID: PMC3046518  PMID: 21080925

Results 1-2 (2)