Search tips
Search criteria

Results 1-23 (23)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Liu, guanyuan")
1.  Gene expression profile analysis identifies metastasis and chemoresistance-associated genes in epithelial ovarian carcinoma cells 
The purpose of this study was to identify genes that associated with higher ability of metastasis and chemotherapic resistance in epithelial ovarian carcinoma (EOC) cells. An oligonucleotide microarray with probe sets complementary to 41,000+ unique human genes and transcripts was used to determine whether gene expression profile may differentiate three epithelial ovarian cell lines (RMG-I-C, COC1 and HO8910) from their sub-lines (RMG-I-H, COCI/DDP and HO8910/PM) with higher ability of metastasis and chemotherapic resistance. Quantitative real-time PCR and immunohistochemical staining validated the microarray results. Hierarchic cluster analysis of gene expression identified 49 genes that exhibited ≥2.0-fold change and P value ≤0.05. Highly differential expression of GCET2, NLRP4, FOXP1 and SNX29 genes was validated by quantitative PCR in all cell line samples. Finally, FOXP1 was validated at the protein level by immunohistochemistry in paraffin embedded ovarian tissues (i.e., for metastasis, 15 primary EOC and 10 omental metastasis [OM]; for chemoresistance, 13 sensitive and 13 resistant EOC). The identification of higher ability of metastasis and chemotherapic resistance-associated genes may provide a foundation for the development of new type-specific diagnostic strategies and treatment for metastasis and chemotherapic resistance in epithelial ovarian cancer.
PMCID: PMC4262766  PMID: 25502083
Gene expression profile; Metastasis-associated gene; Chemoresistance-associated genes; Microarray; Epithelial ovarian carcinoma; FOXP1
2.  Human epididymis protein 4 in association with Annexin II promotes invasion and metastasis of ovarian cancer cells 
Molecular Cancer  2014;13(1):243.
The objective of the present study was to identify human epididymis protein 4 (HE4) interacting proteins and explore the mechanisms underlying their effect on ovarian cancer cell invasion and metastasis.
HE4 interacting proteins were identified by mass spectrometry and validated by co-immunoprecipitation and pull-down assays. The scratch test, the Transwell assay and animal experiments were used to assess the invasive and metastatic abilities of ovarian cancer cells before and after transfection and HE4 protein treatment. HE4 and annexin II protein expression in epithelial ovarian tissues was detected by immunohistochemistry, and the relation between their expression levels was examined.
Annexin II was identified as an HE4 interacting protein. HE4 and annexin II binding interaction promoted ovarian cancer cell invasion and metastasis. HE4 and annexin II expression levels were significantly higher in malignant epithelial ovarian tissues than in benign and normal epithelial ovarian tissues, and they were higher in tissues with lymph node metastases than in those without. HE4 gene interference downregulated the expression of MAPK and the FOCAL adhesion signaling pathway-associated molecules MKNK2 and LAMB2, and HE4 protein supplementation reversed this effect.
The binding interaction between HE4 and annexin II activates the MAPK and FOCAL adhesion signaling pathways, promoting ovarian cancer cell invasion and metastasis.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-4598-13-243) contains supplementary material, which is available to authorized users.
PMCID: PMC4232681  PMID: 25362534
Ovarian cancer; Human epididymis protein 4; Annexin II; Invasion; Metastasis
3.  Rac1 regulates skin tumors by regulation of keratin 17 through recruitment and interaction with CD11b+Gr1+ cells 
Oncotarget  2014;5(12):4406-4417.
Rac1 is a member of the Rho family of small GTPases that control cells proliferation, differentiation, migration, and inflammation. Rac1 is crucial in tumorigenesis and development. Keratin17 and CD11b+Gr1+ cells are considered to regulate skin inflmmation. Here we discuss the regulation of Rac1 on skin tumor formation and its relationship. In samples from human skin squamous cell carcinoma (SCC), Rac1 activity was higher in cancer tissues than in normal skin and activity correlated with keratin 17 overexpression. In a DMBA/TPA-induced mouse skin tumor model, inhibition of Rac1 activity and depletion of CD11b+Gr1+ cells resulted in significant tumor formation. TPA induced recruitment of CD11b+Gr1+ cells into dermis; however, Rac1 inhibitor abolished this recruitment. In vitro, Rac1 induced interferon (IFN) and interlukin (IL6) production in keratinocytes, repression of keratin 17 inhibited IFN and IL6 production induced by Rac1. Moreover, both inhibition of Rac1 activity and repression of keratin 17 restricted proliferation and induction of differentiation in keratinocytes. Coculture of CD11b+Gr1+ cells with keratinocytes activated Wnt pathway in keratinocytes, resulting in enhanced Rac1 activity, overexpression of keratin 17, and hyperproliferation of keratinocytes. Our results suggested that hyperactive Rac1 recruited and interacted with CD11b+Gr1+ cells, inducing keratin 17-regulated inflammation and promoting skin tumor formation.
PMCID: PMC4147333  PMID: 24962779
Rac1; keratin17; Skin tumor
4.  Genes Responsive to Elevated CO2 Concentrations in Triploid White Poplar and Integrated Gene Network Analysis 
PLoS ONE  2014;9(5):e98300.
The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques.
Principal Findings
Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana) ×P. tomentosa) leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes.
Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.
PMCID: PMC4029852  PMID: 24847851
5.  Beclin 1 Expression in Ovarian Tissues and Its Effects on Ovarian Cancer Prognosis 
Beclin 1 is an autophagy-associated protein involved in apoptosis and drug resistance, as well as various malignancies. We investigated the expression of Beclin 1 protein in ovarian epithelial tissues and correlated it with the prognosis of ovarian cancer. Beclin 1 protein expression was determined using immunohistochemistry in 148 patients with ovarian epithelial cancer, 26 with ovarian borderline tumor, 25 with benign ovarian tumor, and 30 with normal ovarian tissue. The relationships between Beclin 1 protein expression and ovarian cancer pathological characteristics were analyzed. The risk factors for ovarian cancer prognosis were analyzed using Cox’s regression model. A survival curve was plotted from the follow-up data of 93 patients with ovarian cancer to analyze the effects of Beclin 1 expression on the prognosis of ovarian cancer. The positive rates of Beclin 1 were significantly higher in ovarian epithelial cancer (148) and borderline tumor (26) than in benign ovarian tumor (25) or normal ovarian tissue (30) (all p < 0.001). The surgical stage and Beclin 1 expression were both independent risk factors for ovarian cancer prognosis (both p < 0.05). Patients with high Beclin 1 levels showed better survival than those with low Beclin 1 levels (p = 0.009). Beclin 1 protein is upregulated in ovarian epithelial cancer and is a prognostic factor of ovarian cancer.
PMCID: PMC4013564  PMID: 24675697
autophagy; Beclin 1; ovarian cancer; prognosis; overall survival
7.  Recombination and Evolution of Duplicate Control Regions in the Mitochondrial Genome of the Asian Big-Headed Turtle, Platysternon megacephalum 
PLoS ONE  2013;8(12):e82854.
Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3′ end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum.
PMCID: PMC3867392  PMID: 24367563
8.  Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property 
Scientific Reports  2013;3:2598.
Flexible asymmetric supercapacitors with excellent electrochemical performance and aesthetic property are realized by using ultrathin two-dimensional (2D) MnO2 and graphene nanosheets as cathode and anode materials, respectively. 2D MnO2 nanosheets (MSs) with a thickness of ca. 2 nm are synthesized with a soft template method for the first time, which achieve a high specific capacitance of 774 F g−1 even after 10000 cycles. Asymmetric supercapacitors based on ultrathin MSs and graphene exhibit a very high energy density up to 97.2 Wh kg−1 with no more than 3% capacitance loss after 10000 cycles in aqueous electrolyte. Most interestingly, we show that the energy storage device can have an aesthetic property. For instance, a “Chinese panda” supercapacitor is capable of lighting up a red light emitting diode. This work has another, quite different aspect that a supercapacitor is no longer a cold industry product, but could have the meaning of art.
PMCID: PMC3764445  PMID: 24008931
9.  Co-Expression of Lewis y Antigen with Human Epididymis Protein 4 in Ovarian Epithelial Carcinoma 
PLoS ONE  2013;8(7):e68994.
The main aims of this study were to explore the molecular structural relationship between Human epididymis protein 4 (HE4) and Lewis y antigen by determining their expression patterns and clinical significance in ovarian epithelial carcinoma.
The structural relationship between HE4 and Lewis y antigen was examined using immunoprecipitation and confocal laser scanning microscopy. HE4 and Lewis y were detected in tissues from malignant (53 cases), borderline (27 cases), benign (15 cases) and normal ovarian tissues (15 cases) using immunohistochemical analysis.
HE4 was present in ovarian cancer, benign tumor tissues, ovarian carcinoma cells, and culture medium, and contained Lewis y antigen. Moreover, expression of Lewis y antigen in HE4 from ovarian cancer was higher than that from benign tumor (P<0.05). HE4 possibly exists as two protein isoforms, both containing Lewis y antigen. Our immunohistochemistry data revealed significantly higher positive expression rates of HE4 in malignant ovarian tissues, compared to benign tumor and normal tissue (P<0.05), similar to Lewis y antigen levels in ovarian cancer (P<0.05). Notably, tissues displaying marked expression of HE4 simultaneously expressed high levels of Lewis y antigen. A linear correlation between the expression patterns of HE4 and Lewis y antigen was evident. Consistently, double-labeling immunofluorescence experiments illustrated co-localization of HE4 and Lewis y antigen within the same area.
HE4 contains Lewis y antigen. Our results further demonstrate a close correlation between the expression levels of the two antigens, which are significantly high in ovarian cancer.
PMCID: PMC3718801  PMID: 23894390
10.  Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi 
BMC Genomics  2013;14:411.
Nomuraea rileyi is used as an environmental-friendly biopesticide. However, mass production and commercialization of this organism are limited due to its fastidious growth and sporulation requirements. When cultured in amended medium, we found that N. rileyi could produce microsclerotia bodies, replacing conidiophores as the infectious agent. However, little is known about the genes involved in microsclerotia development. In the present study, the transcriptomes were analyzed using next-generation sequencing technology to find the genes involved in microsclerotia development.
A total of 4.69 Gb of clean nucleotides comprising 32,061 sequences was obtained, and 20,919 sequences were annotated (about 65%). Among the annotated sequences, only 5928 were annotated with 34 gene ontology (GO) functional categories, and 12,778 sequences were mapped to 165 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we assessed the transcriptomic differences between cultures grown in minimal and amended medium. In total, 4808 sequences were found to be differentially expressed; 719 differentially expressed unigenes were assigned to 25 GO classes and 1888 differentially expressed unigenes were assigned to 161 KEGG pathways, including 25 enrichment pathways. Subsequently, we examined the up-regulation or uniquely expressed genes following amended medium treatment, which were also expressed on the enrichment pathway, and found that most of them participated in mediating oxidative stress homeostasis. To elucidate the role of oxidative stress in microsclerotia development, we analyzed the diversification of unigenes using quantitative reverse transcription-PCR (RT-qPCR).
Our findings suggest that oxidative stress occurs during microsclerotia development, along with a broad metabolic activity change. Our data provide the most comprehensive sequence resource available for the study of N. rileyi. We believe that the transcriptome datasets will serve as an important public information platform to accelerate studies on N. rileyi microsclerotia.
PMCID: PMC3698084  PMID: 23777366
Transcriptome; Oxidative Stress; Microsclerotia; Nomuraea Rileyi
11.  Expression of Lewis y antigen and integrin αv, β3 in ovarian cancer and their relationship with chemotherapeutic drug resistance 
This study investigates the expression of Lewis y antigen, integrin αv, β3 in epithelial ovarian cancer tissues. We further evaluate the relationship between their expression and chemotherapy resistance of ovarian cancer and its possible clinical significance.
Tissues of 92 patients with ovarian cancer meeting the inclusion criteria with complete follow-up data were enrolled and divided into chemotherapy resistant group and sensitive group. The expression and relationship of Lewis y antigen and integrin αv, β3 are assessed in paraffin sections using immunohistochemistry and double-labeling immunofluorescence method. Multivariate logistic regression analysis was used to investigate the relationship between age, clinical stage, differentiation, histologic subtype, Lewis y antigen and integrin αv, β3 expression in ovarian cancer patients.
The expression rates of Lewis y antigen and integrin αv in the resistant group, significantly higher than the rates found in the sensitive group (p <0.05). Multivariate analysis showed that the expression of Lewis y antigen, integrin αv and ovarian cancer’s clinical stage were independent, drug resistance-related risk factors. The expression levels of Lewis y antigen and integrin αv, β3 were positively correlated with each other.
A close correlation between Lewis y antigen, integrin αv, β3 and ovarian cancer was observed. Lewis y antigen can influence the biological behavior of a tumor cell as an important composition of integrin αv, β3 by some signal pathway. And the expression of Lewis y antigen, integrin αv and ovarian cancer’s clinical stage are both independent, drug resistance-related risk factors.
PMCID: PMC3699420  PMID: 23725446
Ovarian Cancer; Lewis y Antigen; Integrin αv, β3; Chemotherapeutic Drug Resistance
12.  Chemoresistance Is Associated with MUC1 and Lewis y Antigen Expression in Ovarian Epithelial Cancers 
The aim of this study was to analyze the correlation and clinical significance between the expression of Mucin-1 (MUC1) and the Lewis y antigen with chemoresistance in ovarian epithelial cancers.
Ovarian cancer patients (n = 92) treated at our hospital from May 2005 to July 2009 were divided, according to their treatment and follow-up outcomes, into a resistant group (n = 37) or sensitive group (n = 55). The expression of MUC1 and Lewis y antigen in ovarian cancer tissues was detected using immunohistochemistry and correlated with chemoresistance.
The positive rates of MUC1 and Lewis y antigen in the resistant group were both 91.89%, significantly higher than their positive rates in the sensitive group (65.45% and 69.09%, respectively, and both p < 0.05). MUC1 or Lewis y expression and the pathological stage of the tissue were independent risk factors for chemoresistance (all p < 0.05).
The increased expression of MUC1 and the Lewis y antigen is a significant risk factor for chemoresistance in patients with ovarian epithelial cancer.
PMCID: PMC3709716  PMID: 23708102
ovarian epithelial cancer; MUC1; Lewis y antigen; chemoresistance; immunohistochemistry
13.  High Expression of Lewis y Antigen and CD44 Is Correlated with Resistance to Chemotherapy in Epithelial Ovarian Cancers 
PLoS ONE  2013;8(2):e57250.
To measure Lewis y antigen and CD44 antigen expression in epithelial ovarian carcinoma and to correlate the levels of these antigens with clinical response to chemotherapy.
The study cases included 34 cases of ovarian carcinoma with resistance to chemotherapeutic drugs, 6 partially drug-sensitive cases, and 52 drug-sensitive cases (92 total).
The rates of expression of Lewis y antigen and CD44 antigen were significantly greater in the drug-resistant group than that in the partially-sensitive or sensitive groups. Surgical stage, residual tumor size and expression of CD44 and Lewis y antigen in ovarian carcinoma tissues were independent risk factors for chemotherapeutic drug resistance.
Over-expression of Lewis y and CD44 antigen are strong risk factors for chemotherapeutic drug resistance in ovarian carcinoma patients.
PMCID: PMC3585297  PMID: 23468946
14.  Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat 
Recently, cardiac telocytes were found in the myocardium. However, the functional role of cardiac telocytes and possible changes in the cardiac telocyte population during myocardial infarction in the myocardium are not known. In this study, the role of the recently identified cardiac telocytes in myocardial infarction (MI) was investigated. Cardiac telocytes were distributed longitudinally and within the cross network of the myocardium, which was impaired during MI. Cardiac telocytes in the infarction zone were undetectable from approximately 4 days to 4 weeks after an experimental coronary occlusion was used to induce MI. Although cardiac telocytes in the non-ischaemic area of the ischaemic heart experienced cell death, the cell density increased approximately 2 weeks after experimental coronary occlusion. The cell density was then maintained at a level similar to that observed 1–4 days after left anterior descending coronary artery (LAD)-ligation, but was still lower than normal after 2 weeks. We also found that simultaneous transplantation of cardiac telocytes in the infarcted and border zones of the heart decreased the infarction size and improved myocardial function. These data indicate that cardiac telocytes, their secreted factors and microvesicles, and the microenvironment may be structurally and functionally important for maintenance of the physiological integrity of the myocardium. Rebuilding the cardiac telocyte network in the infarcted zone following MI may be beneficial for functional regeneration of the infarcted myocardium.
PMCID: PMC3823142  PMID: 23205601
cardiac telocytes; myocardial infarction; regeneration
15.  Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors 
BMC Cancer  2012;12:622.
The ubiquitin-proteasome system and macroautophagy (hereafter referred to autophagy) are two complementary pathways for protein degradation. Emerging evidence suggests that proteasome inhibition might be a promising approach for tumor therapy. Accumulating data suggest that autophagy is activated as a compensatory mechanism upon proteasome activity is impaired.
Autophagy activation was measured using acridine orange staining and LC3 transition. Cell viability and apoptosis were measured using MTT assay and flow cytometry, respectively. Beclin 1 expression vectors or shRNA against Beclin 1 (shBeclin 1) were transfected to investigate the role of Beclin 1 in autophagy activation and cytotoxicity of ovarian cancer cells induced by proteasome inhibitors.
Proteasome inhibitors suppressed proliferation and induced autophagy in ovarian cancer cells. Neither phosphoinositide 3-kinase (PI3K) inhibitors nor shRNA against Beclin 1 could abolish the formation of acidic vacuoles and the processing of LC3 induced by proteasome inhibitors. Moreover, Beclin 1 overexpression enhanced anti-proliferative effects of proteasome inhibitors in ovarian cancer cells.
For the first time, the current study demonstrated that proteasome inhibitors induced PI3K and Beclin 1-independent autophagy in ovarian cancer cells. In addition, this study revealed autophagy-independent tumor suppressive effects of Beclin 1 in ovarian cancer cells.
PMCID: PMC3553022  PMID: 23270461
Proteasome inhibition; Beclin1; Ovarian cancer
16.  Lewis y Regulate Cell Cycle Related Factors in Ovarian Carcinoma Cell RMG-I in Vitro via ERK and Akt Signaling Pathways 
To investigate the effect of Lewis y overexpression on the expression of proliferation-related factors in ovarian cancer cells.
mRNA levels of cyclins, CDKs, and CKIs were measured in cells before and after transfection with the α1,2-fucosyltransferase gene by real-time PCR, and protein levels of cyclins, CDKs and CKIs were determined in cells before and after gene transfection by Western blot.
Lewis y overexpression led to an increase in both mRNA and protein expression levels of cyclin A, cyclin D1 and cyclin E in ovarian cancer cells, decrease in both mRNA and protein expression levels of p16 and p21, and decrease of p27 at only the protein expression level without change in its mRNA level. There were no differences in proteins and the mRNA levels of CDK2, CDK4 and CDK6 before and after gene transfection. Anti-Lewis y antibody, ERK and PI3K pathway inhibitors PD98059 and LY294002 reduced the difference in cyclin and CKI expression caused by Lewis y overexpression.
Lewis y regulates the expression of cell cycle-related factors through ERK/MAPK and PI3K/Akt signaling pathways to promote cell proliferation.
PMCID: PMC3269723  PMID: 22312289
Lewis(y) antigen; cell cycle; cyclin; cyclin-dependent kinases; cyclin-dependent kinase inhibitors
17.  Elevated Levels of Lewis Y and Integrin α5β1 Correlate with Chemotherapeutic Drug Resistance in Epithelial Ovarian Carcinoma 
To measure Lewis y and integrin α5β1 expression in epithelial ovarian carcinoma and to correlate the levels of these molecules with ovarian carcinoma chemotherapy and prognosis.
The study population included 34 ovarian carcinoma patients with chemotherapeutic drug-resistance, six partially drug-sensitive cases, and 52 drug-sensitive cases (92 total). Immunochemistry was used to determine expression of Lewis y antigen and integrin α5β1 in ovarian carcinoma tissues, and correlation of these molecules with chemotherapy resistance was further investigated, Multi-factor logistic regression analysis was applied to investigate: age, surgical stage, grade, subtype of patient cases, metastasis of lymph nodes, residual tumor size, expression levels of Lewis y antigen and integrin α5β1 correlation with ovarian carcinoma chemotherapy resistance.
The expression rates of Lewis y antigen and integrins α5 and β1 were significantly greater in the drug-resistant group (91.17%, 85.29%, 88.24%) than the partially sensitive (50.00%, 33.33%, 50.00%) or sensitive groups (61.54%, 57.69%, 55.77%). Binary logistic regression analysis revealed that surgical stage, residual tumor size, and expression of integrin α5 and Lewis y in ovarian carcinoma tissues were independent risk factors for chemotherapeutic drug resistance.
Overexpression of Lewis y and integrin α5 are strong risk factors for chemotherapeutic drug resistance in ovarian carcinoma patients.
PMCID: PMC3546651  PMID: 23443083
integrins; Lewis y antigen; ovarian caricinoma; chemoresistance
18.  Enhancive effects of Lewis y antigen on CD44-mediated adhesion and spreading of human ovarian cancer cell line RMG-I 
This study aimed to investigate the molecular structural relationship between cell adhesive molecule CD44 and Lewis y antigen, and determine the effects of Lewis y antigen on CD44-mediated adhesion and spreading of ovarian cancer cell line RMG-I and the Lewis y antigen-overexpressed cell line RMG-I-H.
The expression of CD44 in RMG-I and RMG-I-H cells before and after treatment of Lewis y monoclonal antibody was detected by immunocytochemistry; the expression of Lewis y antigen and CD44 was detected by Western Blot. The structural relationship between Lewis y antigen and CD44 was determined by immunoprecipitation and confocal laser scanning microscopy. The adhesion and spreading of RMG-I and RMG-I-H cells on hyaluronic acid (HA) were observed. The expression of CD44 mRNA in RMG-I and RMG-I-H cells was detected by real-time RT-PCR.
Immunocytochemistry revealed that the expression of CD44 was significantly higher in RMG-I-H cells than in RMG-I cells (P < 0.01), and its expression in both cell lines was significantly decreased after treatment of Lewis y monoclonal antibody (both P < 0.01). Western Blot confirmed that the content of CD44 in RMG-I-H cells was 1.46 times of that in RMG-I cells. The co-location of Lewis y antigen and CD44 was confirmed by co-immunoprecipitation. The co-expression of CD44 and Lewis y antigen in RMG-I-H cells was 2.24 times of that in RMG-I cells. The adhesion and spreading of RMG-I-H cells on HA were significantly enhanced as compared to those of RMG-I cells (P < 0.01), and this enhancement was inhibited by Lewis y monoclonal antibody (P < 0.01). The mRNA level of CD44 in both cell lines was similar (P > 0.05).
Lewis y antigen strengthens CD44-mediated adhesion and spreading of ovarian cancer cells.
PMCID: PMC3045975  PMID: 21294926
19.  Study on the Expression and Clinical Significances of Lewis y Antigen and Integrin αv, β3 in Epithelial Ovarian Tumors 
To detect the expression and clinical significances of Lewis y antigen and integrin αv, β3 in epithelial ovarian tumors, and to explore the expression correlation between Lewis y antigen and integrin αv, β3.
Immunohistochemical staining was performed in 95 cases of epithelial ovarian cancer, 37 cases of borderline tumors, 20 cases of benign tumors, and 20 cases of normal ovarian tissue, for the detection of Lewis y antigen and integrin αv, β3 expressions, and to analyze the relationship between Lewis y antigen and integrin, and the relationship between clinical and pathological parameters of ovarian cancer. In addition, immunofluorescence double labeling was utilized to detect the expression correlation between Lewis y antigen and integrin αv, β3 in ovarian cancer.
In epithelial ovarian tumors, the expression rate of Lewis y antigen was 81.05%, significantly higher than that of borderline (51.53%) (P < 0.05) and benign (25%) (P < 0.01) tumors, and normal ovarian tissues (0) (P < 0.01). The expression rate of integrin αv, β3 in malignant epithelial ovarian tumors was 78.95% and 82.11%, respectively, significantly higher than that of the borderline (45.94%, 40.54%) (both P < 0.05), benign group (10.00%, 15.00%) (both P < 0.01) and normal ovary group (5%, 15%) (both P < 0.01).
Lewis y and integrins αv, β3 are relevant to pelvic and abdominal diffusion and metastasis of ovarian cancer cells, suggesting that these two molecules mediate a boosting function for tumor metastasis.
PMCID: PMC3131568  PMID: 21747684
epithelial ovarian tumor; integrin αvβ3; Lewis y antigen; immunohistochemistry; immunofluorescence double labeling method
20.  The Stimulation of IGF-1R Expression by Lewis(y) Antigen Provides a Powerful Development Mechanism of Epithelial Ovarian Carcinoma 
This study aimed to measure and correlate the expression of insulin-like growth factor receptor-1 (IGF-1R) and the Lewis(y) antigen in ovarian cancer cell lines and tissue samples.
Reverse transcriptase PCR (RT-PCR), Western blotting, immunoprecipitation, immunohistochemistry, and immunofluorescence double-labeling techniques were applied to detect and measure the expression of Lewis(y) and IGF-1R.
In α1,2-fucosyltransferase (α1,2-FT)-transfected cells, IGF-1R expression was significantly upregulated compared with cells that do not overexpress α1,2-FT (P < 0.05). The amount of Lewis(y) expressed on IGF-1R increased 1.81-fold in α1,2-FT-overexpressing cells (P < 0.05), but the ratio of Lewis(y) expressed on IGF-1R to total IGF-1R was unaltered between two cells (P > 0.05). In malignant epithelial ovarian tumors, the positivity rates of Lewis(y) and IGF-1R detection were 88.3% and 93.33%, respectively, which is higher than the positivity rates in marginal (60.00% and 63.33%, all P < 0.05), benign (33.00% and 53.33%, all P < 0.01), and normal (0% and 40%, all P < 0.01) ovarian samples. No correlations were detected in positivity rates of Lewis(y) or IGF-1R expression with respect to clinicopathological parameters in ovarian cancers (all P > 0.05). Both IGF-1R and Lewis(y) were highly expressed in ovarian cancer tissues, and their expression levels were positively correlated (P < 0.05).
Overexpression of Lewis(y) results in overexpression of IGF-1R. Both IGF-1R and Lewis(y) are associated with the occurrence and development of ovarian cancers.
PMCID: PMC3211010  PMID: 22072919
epithelial ovarian tumor; Insulin-like growth factor receptor-1; Lewis(y) antigen; immunohistochemistry; immunofluorescence double labeling method
21.  Increase in Docetaxel-Resistance of Ovarian Carcinoma-Derived RMG-1 Cells with Enhanced Expression of Lewis Y Antigen 
Epithelial carcinomas of the ovary exhibit the highest mortality rate among gynecologic malignancies. Studies found that the metabolism of glycolipids or carbohydrates is associated with acquirement of anticancer drug-resistance by cancer cells. This study was to characterize possible involvement of Lewis Y (LeY) antigen in the drug-resistance of cancer cells. We transfected the α1,2-fucosyltransferase gene into human ovarian carcinoma-derived RMG-1 cells and established RMG-1-hFUT cells with enhanced expression of LeY. We determined the effects of docetaxel on the survival of cells by MTT assaying and observed the apoptosis of cells in the presence of docetaxel by flow cytometric analysis and by transmission electron microscopy. Plasma membranes and intracellular granules in RMG-1-hFUT cells were stained with anti-LeY antibody, the intensity of the staining was higher than that in control cells. The RMG-1-hFUT cells exhibited higher resistance to docetaxel than the control cells with regard to the docetaxel concentration and time course. After treatment with 10 μg/mL docetaxel for 72 h, the control cells, but not RMG-1-hFUT, contained abundant positively stained cell debris due to disintegration of the cytoskeleton. On transmission electron microscopy, although the control cells treated with docetaxel as above showed the following morphology, i.e., absence of villi, cells shrunken in size, pyknosis, agglutinated chromatin and cell buds containing nuclei in the process of apoptosis, the RMG-1-hFUT cells showed only agglutinated chromatin and vacuoles in the cytoplasm. In summary, cells with enhanced expression of LeY were shown to acquire docetaxel-resistance, indicating the possible involvement of glycoconjugates in the drug-resistance.
PMCID: PMC3233407  PMID: 22174601
ovarian cancer; Lewis Y antigen; docetaxel; drug resistance
22.  Lewis Y Promotes Growth and Adhesion of Ovarian Carcinoma-Derived RMG-I Cells by Upregulating Growth Factors 
Lewis y (LeY) antigen is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Overexpression of LeY is frequently observed in epithelial-derived cancers and has been correlated to the pathological staging and prognosis. However, the effects of LeY on ovarian cancer are not yet clear. Previously, we transfected the ovarian cancer cell line RMG-I with the α1,2-fucosyltransferase gene to obtain stable transfectants, RMG-I-H, that highly express LeY. In the present study, we examined the proliferation, tumorigenesis, adhesion and invasion of the cell lines with treatment of LeY monoclonal antibody (mAb). Additionally, we examined the expression of TGF-β1, VEGF and b-FGF in xenograft tumors. The results showed that the proliferation and adhesion in vitro were significantly inhibited by treatment of RMG-I-H cells with LeY mAb. When subcutaneously inoculated in nude mice, RMG-I-H cells produced large tumors, while mock-transfected cells RMG-I-C and the parental cells RMG-I produced small tumors. Moreover, the tumor formation by RMG-I-H cells was inhibited by preincubating the cells with LeY mAb. Notably, the expression of TGF-β1, VEGF and b-FGF all increased in RMG-I-H cells. In conclusion, LeY plays an important role in promoting cell proliferation, tumorigenecity and adhesion, and these effects may be related to increased levels of growth factors. The LeY antibody shows potential application in the treatment of LeY-positive tumors.
PMCID: PMC2996800  PMID: 21152298
Lewis y; ovarian cancer; proliferation; tumorigenecity; adhesion; inhibition
23.  Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway 
Lewis y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cell surface. Elevated expression of Lewis y has been found in 75% of ovarian tumor, and the high expression level is correlated to the tumor's pathological staging and prognosis. This study was to investigate the effect and the possible mechanism of Lewis y on the proliferation of human ovarian cancer cells.
We constructed a plasmid encoding α1,2-fucosyltransferase (α1,2-FT) gene and then transfected it into ovarian carcinoma-derived RMG-I cells with lowest Lewis y antigen expression level. Effect of Lewis y on cell proliferation was assessed after transfection. Changes in cell survival and signal transduction were evaluated after α-L-fucosidase, anti-Lewis y antibody and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.
Our results showed that the levels of α1,2-FT gene and Lewis y increased significantly after transfection. The cell proliferation of ovarian carcinoma-derived RMG-I cells sped up as the Lewis y antigen was increased. Both of α-L-fucosidase and anti-Lewis y antibody inhibited the cell proliferation. The phosphorylation level of Akt was apparently elevated in Lewis y-overexpressing cells and the inhibitor of PI3K, LY294002, dramatically inhibited the growth of Lewis y-overexpressing cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different expression of α1,2-FT were attenuated significantly by the monoantibody to Lewis y and by the PI3K inhibitor LY294002.
Increased expression of Lewis y antigen plays an important role in promoting cell proliferation through activating PI3K/Akt signaling pathway in ovarian carcinoma-derived RMG-I cells. Inhibition of Lewis y expression may provide a new therapeutic approach for Lewis y positive ovarian cancer.
PMCID: PMC2806302  PMID: 20003467

Results 1-23 (23)