PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  First Report on Co-Occurrence Knockdown Resistance Mutations and Susceptibility to Beta-Cypermethrin in Anopheles sinensis from Jiangsu Province, China 
PLoS ONE  2012;7(1):e29242.
The increasing prevalence of insecticide resistance in Anopheles sinensis, a major vector of malaria in Jiangsu province in eastern China, threatens to compromise the successful use of insecticides in malaria control strategies. It is therefore vital to understand the insecticide resistance status of An. sinensis in the region. This study examined the nucleotide diversity of the para-sodium channel and knockdown resistance (kdr) in five field populations of adult An. sinensis mosquitoes collected in Jiangsu province, identifying the L1014F and L1014C substitutions for the first time. Competitive polymerase chain reaction (PCR) amplification of specific allele (cPASA) and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) for resistance diagnosis were developed and validated. Comparing the results with direct sequencing revealed that the PCR-RFLP method was more sensitive and specific whereas the cPASA method was more convenient and suitable. The significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014C substitutions in the kdr gene provides a useful molecular marker for monitoring beta-cypermethrin resistance in natural populations of An. sinensis. Our results point to the L1014F substitution as the key mutation associated with beta-cypermethrin resistance. The high resistance and mutation frequency detected in the five populations also suggest cross-resistance with other pyrethroids may occur in An. sinensis, highlighting the need for further surveys to map insecticide resistance in China and the adoption of a rational management of insecticide application for resistance management and mosquito vector control.
doi:10.1371/journal.pone.0029242
PMCID: PMC3260143  PMID: 22272229
2.  Synergy between Proteasome Inhibitors and Imatinib Mesylate in Chronic Myeloid Leukemia 
PLoS ONE  2009;4(7):e6257.
Background
Resistance developed by leukemic cells, unsatisfactory efficacy on patients with chronic myeloid leukemia (CML) at accelerated and blastic phases, and potential cardiotoxity, have been limitations for imatinib mesylate (IM) in treating CML. Whether low dose IM in combination with agents of distinct but related mechanisms could be one of the strategies to overcome these concerns warrants careful investigation.
Methods and Findings
We tested the therapeutic efficacies as well as adverse effects of low dose IM in combination with proteasome inhibitor, Bortezomib (BOR) or proteasome inhibitor I (PSI), in two CML murine models, and investigated possible mechanisms of action on CML cells. Our results demonstrated that low dose IM in combination with BOR exerted satisfactory efficacy in prolongation of life span and inhibition of tumor growth in mice, and did not cause cardiotoxicity or body weight loss. Consistently, BOR and PSI enhanced IM-induced inhibition of long-term clonogenic activity and short-term cell growth of CML stem/progenitor cells, and potentiated IM-caused inhibition of proliferation and induction of apoptosis of BCR-ABL+ cells. IM/BOR and IM/PSI inhibited Bcl-2, increased cytoplasmic cytochrome C, and activated caspases. While exerting suppressive effects on BCR-ABL, E2F1, and β-catenin, IM/BOR and IM/PSI inhibited proteasomal degradation of protein phosphatase 2A (PP2A), leading to a re-activation of this important negative regulator of BCR-ABL. In addition, both combination therapties inhibited Bruton's tyrosine kinase via suppression of NFκB.
Conclusion
These data suggest that combined use of tyrosine kinase inhibitor and proteasome inhibitor might be helpful for optimizing CML treatment.
doi:10.1371/journal.pone.0006257
PMCID: PMC2705802  PMID: 19606213

Results 1-2 (2)