Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  MicroRNA Profiles Discriminate among Colon Cancer Metastasis 
PLoS ONE  2014;9(6):e96670.
MicroRNAs are being exploited for diagnosis, prognosis and monitoring of cancer and other diseases. Their high tissue specificity and critical role in oncogenesis provide new biomarkers for the diagnosis and classification of cancer as well as predicting patients' outcomes. MicroRNAs signatures have been identified for many human tumors, including colorectal cancer (CRC). In most cases, metastatic disease is difficult to predict and to prevent with adequate therapies. The aim of our study was to identify a microRNA signature for metastatic CRC that could predict and differentiate metastatic target organ localization. Normal and cancer tissues of three different groups of CRC patients were analyzed. RNA microarray and TaqMan Array analysis were performed on 66 Italian patients with or without lymph nodes and/or liver recurrences. Data obtained with the two assays were analyzed separately and then intersected to identify a primary CRC metastatic signature. Five differentially expressed microRNAs (hsa-miR-21, -103, -93, -31 and -566) were validated by qRT-PCR on a second group of 16 American metastatic patients. In situ hybridization was performed on the 16 American patients as well as on three distinct commercial tissues microarray (TMA) containing normal adjacent colon, the primary adenocarcinoma, normal and metastatic lymph nodes and liver. Hsa-miRNA-21, -93, and -103 upregulation together with hsa-miR-566 downregulation defined the CRC metastatic signature, while in situ hybridization data identified a lymphonodal invasion profile. We provided the first microRNAs signature that could discriminate between colorectal recurrences to lymph nodes and liver and between colorectal liver metastasis and primary hepatic tumor.
PMCID: PMC4055753  PMID: 24921248
2.  EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 
Nature  2013;497(7449):383-387.
MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level1. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer2,3. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses4, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour5. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.
PMCID: PMC3717558  PMID: 23636329
3.  Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma 
The Journal of pathology  2013;229(3):10.1002/path.4109.
Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression.
PMCID: PMC3857031  PMID: 23007860
microRNA; biogenesis; glioma
4.  AMPKα Modulation in Cancer Progression: Multilayer Integrative Analysis of the Whole Transcriptome in Asian Gastric Cancer 
Cancer research  2012;72(10):10.1158/0008-5472.CAN-11-3870.
Gastric cancer is the most common cancer in Asia and most developing countries. Despite the use of multimodality therapeutics, it remains the second leading cause of cancer death in the world. To identify the molecular underpinnings of gastric cancer in the Asian population, we applied an RNA-sequencing approach to gastric tumor and noncancerous specimens, generating 680 million informative short reads to quantitatively characterize the entire transcriptome of gastric cancer (including mRNAs and microRNAs). A multi-layer analysis was then developed to identify multiple types of transcriptional aberrations associated with different stages of gastric cancer, including differentially expressed mRNAs, recurrent somatic mutations and key differentially expressed microRNAs. Through this approach, we identified the central metabolic regulator AMPK-α as a potential functional target in Asian gastric cancer. Further, we experimentally demonstrated the translational relevance of this gene as a potential therapeutic target for early-stage gastric cancer in Asian patients. Together, our findings not only provide a valuable information resource for identifying and elucidating the molecular mechanisms of Asian gastric cancer, but also represent a general integrative framework to develop more effective therapeutic targets.
PMCID: PMC3872998  PMID: 22434430
RNA-sequencing; integrative analysis; microRNA; AMPK; gastric cancer
5.  MicroRNA expression profiling of male breast cancer 
MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. To test the hypothesis that there is a specific miRNA expression signature which characterizes male breast cancers, we performed miRNA microarray analysis in a series of male breast cancers and compared them with cases of male gynecomastia and female breast cancers.
Paraffin blocks were obtained at the Department of Pathology of Thomas Jefferson University from 28 male patients including 23 breast cancers and five cases of male gynecomastia, and from 10 female ductal breast carcinomas. The RNA harvested was hybridized to miRNA microarrays (~1,100 miRNA probes, including 326 human and 249 mouse miRNA genes, spotted in duplicate). To further support the microarray data, an immunohistochemical analysis for two specific miRNA gene targets (HOXD10 and VEGF) was performed in a small series of male breast carcinoma and gynecomastia samples.
We identified a male breast cancer miRNA signature composed of a large portion of underexpressed miRNAs. In particular, 17 miRNAs with increased expression and 26 miRNAs with decreased expression were identified in male breast cancer compared with gynecomastia. Among these miRNAs, some had well-characterized cancer development association and some showed a deregulation in cancer specimens similar to the one previously observed in the published signatures of female breast cancer. Comparing male with female breast cancer miRNA expression signatures, 17 significantly deregulated miRNAs were observed (four overexpressed and 13 underexpressed in male breast cancers). The HOXD10 and VEGF gene immunohistochemical expression significantly follows the corresponding miRNA deregulation.
Our results suggest that specific miRNAs may be directly involved in male breast cancer development and that they may represent a novel diagnostic tool in the characterization of specific cancer gene targets.
PMCID: PMC2750120  PMID: 19664288
6.  Compatible solutes from hyperthermophiles improve the quality of DNA microarrays 
BMC Biotechnology  2007;7:82.
DNA microarrays are among the most widely used technical platforms for DNA and RNA studies, and issues related to microarrays sensitivity and specificity are therefore of general importance in life sciences. Compatible solutes are derived from hyperthermophilic microorganisms and allow such microorganisms to survive in environmental and stressful conditions. Compatible solutes show stabilization effects towards biological macromolecules, including DNA.
We report here that compatible solutes from hyperthermophiles increased the performance of the hybridization buffer for Affymetrix GeneChip® arrays. The experimental setup included independent hybridizations with constant RNA over a wide range of compatible solute concentrations. The dependence of array quality and compatible solute was assessed using specialized statistical tools provided by both the proprietary Affymetrix quality control system and the open source Bioconductor suite.
Low concentration (10 to 25 mM) of hydroxyectoine, potassium mannosylglycerate and potassium diglycerol phosphate in hybridization buffer positively affected hybridization parameters and enhanced microarrays outcome. This finding harbours a strong potential for the improvement of DNA microarray experiments.
PMCID: PMC2248183  PMID: 18036223
7.  mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer 
Molecular Cancer  2007;6:54.
Colorectal cancer develops through two main genetic instability pathways characterized by distinct pathologic features and clinical outcome.
We investigated colon cancer samples (23 characterized by microsatellite stability, MSS, and 16 by high microsatellite instability, MSI-H) for genome-wide expression of microRNA (miRNA) and mRNA. Based on combined miRNA and mRNA gene expression, a molecular signature consisting of twenty seven differentially expressed genes, inclusive of 8 miRNAs, could correctly distinguish MSI-H versus MSS colon cancer samples. Among the differentially expressed miRNAs, various members of the oncogenic miR-17-92 family were significantly up-regulated in MSS cancers. The majority of protein coding genes were also up-regulated in MSS cancers. Their functional classification revealed that they were most frequently associated with cell cycle, DNA replication, recombination, repair, gastrointestinal disease and immune response.
This is the first report that indicates the existence of differences in miRNA expression between MSS versus MSI-H colorectal cancers. In addition, the work suggests that the combination of mRNA/miRNA expression signatures may represent a general approach for improving bio-molecular classification of human cancer.
PMCID: PMC2048978  PMID: 17716371
8.  Global gene expression profiling of cells overexpressing SMC3 
Molecular Cancer  2005;4:34.
The Structural Maintenance of Chromosome 3 protein (SMC3) plays an essential role during the sister chromatid separation, is involved in DNA repair and recombination and participates in microtubule-mediated intracellular transport. SMC3 is frequently elevated in human colon carcinoma and overexpression of the protein transforms murine NIH3T3 fibroblasts. In order to gain insight into the mechanism of SMC3-mediated tumorigenesis a gene expression profiling was performed on human 293 cells line stably overexpressing SMC3.
Biotinylated complementary RNA (cRNA) was used for hybridization of a cDNAmicroarray chip harboring 18,861 65-mer oligos derived from the published dEST sequences. After filtering, the hybridization data were normalized and statistically analyzed. Sixty-five genes for which a putative function could be assigned displayed at least two-fold change in their expression level. Eighteen of the affected genes is either a transcriptional factor or is involved in DNA and chromatin related mechanisms whereas most of those involved in signal transduction are members or modulators of the ras-rho/GTPase and cAMP signaling pathways. In particular the expression of RhoB and CRE-BPa, two mediators of cellular transformation, was significantly enhanced. This association was confirmed by analyzing the RhoB and CRE-BPa transcript levels in cells transiently transfected with an SMC3 expression vector. Consistent with the idea that the activation of ras-rho/GTPase and cAMP pathways is relevant in the context of the cellular changes following SMC3 overexpression, gene transactivation through the related serum (SRE) and cAMP (CRE) cis-acting response elements was significantly increased.
We have documented a selective effect of the ectopic expression of SMC3 on a set of genes and transcriptional signaling pathways that are relevant for tumorigenesis. The results lead to postulate that RhoB and CRE-BPa two known oncogenic mediators whose expression is significantly increased following SMC3 overexpression play a significant role in mediating SMC3 tumorigenesis.
PMCID: PMC1242249  PMID: 16156898
9.  Coordinate control of cell cycle regulatory genes in zebrafish development tested by cyclin D1 knockdown with morpholino phosphorodiamidates and hydroxyprolyl-phosphono peptide nucleic acids 
Nucleic Acids Research  2005;33(15):4914-4921.
During early zebrafish (Danio rerio) development zygotic transcription does not begin until the mid-blastula transition (MBT) ∼3 h after fertilization. MBT demarcates transition from synchronous short cell cycles of S and M phases exclusively to full cycles encompassing G1 and G2 phases. Transcriptional profiling and RT–PCR analyses during these phases enabled us to determine that this shift corresponds to decreased transcript levels of S/M phase cell cycle control genes (e.g. ccna2, ccnb1, ccnb2 and ccne) and increased transcript levels of ccnd1, encoding cyclin D1, and orthologs of p21 (p21-like) and retinoblastoma (Rb-like 1). To investigate the regulation of this process further, the translation of ccnd1 mRNA, a G1/S checkpoint control element, was impaired by microinjection of ccnd1-specific morpholino phosphorodiamidate (MO) 20mer or hydroxyprolyl-phosphono peptide nucleic acid (HypNA-pPNA) 16mer antisense oligonucleotides. The resulting downregulation of cyclin D1 protein resulted in microophthalmia and microcephaly, but not lethality. The phenotypes were not seen with 3-mismatch MO 20mers or 1-mismatch HypNA-pPNA 16mers, and were rescued by an exogenous ccnd1 mRNA construct with five mismatches. Collectively, these results indicate that transcription of key molecular determinants of asynchronous cell cycle control in zebrafish embryos commences at MBT and that the reduction of cyclin D1 expression compromises zebrafish eye and head development.
PMCID: PMC1199556  PMID: 16284195
10.  DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals 
Human Vaccines & Immunotherapeutics  2013;9(10):2237-2245.
We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c+CD40lowIL-10+ regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway.
PMCID: PMC3906410  PMID: 24051433
DNA and protein co-administration; cavelin-1; DC-SIGN; iTreg; tolerance
11.  MicroRNAs 221 and 222 Bypass Quiescence and Compromise Cell Survival 
Cancer research  2008;68(8):2773-2780.
MicroRNAs (miRNA) have tumor suppressive and oncogenic potential in human cancer, but whether and how miRNAs control cell cycle progression is not understood. To address this question, we carried out a comprehensive analysis of miRNA expression during serum stimulation of quiescent human cells. Time course analyses revealed that four miRNAs are up-regulated and >100 miRNAs are down-regulated, as cells progress beyond the G1-S phase transition. We analyzed the function of two up-regulated miRNAs (miR-221 and miR-222) that are both predicted to target the cell growth suppressive cyclin-dependent kinase inhibitors p27 and p57. Our results show that miR-221 and miR-222 both directly target the 3′ untranslated regions of p27 and p57 mRNAs to reduce reporter gene expression, as well as diminish p27 and p57 protein levels. Functional studies show that miR-221 and miR-222 prevent quiescence when elevated during growth factor deprivation and induce precocious S-phase entry, thereby triggering cell death. Thus, the physiologic upregulation of miR-221 and miR-222 is tightly linked to a cell cycle checkpoint that ensures cell survival by coordinating competency for initiation of S phase with growth factor signaling pathways that stimulate cell proliferation.
PMCID: PMC3613850  PMID: 18413744
12.  Transcription signatures encoded by ultraconserved genomic regions in human prostate cancer 
Molecular Cancer  2013;12:13.
Ultraconserved regions (UCR) are genomic segments of more than 200 base pairs that are evolutionarily conserved among mammalian species. They are thought to have functions as transcriptional enhancers and regulators of alternative splicing. Recently, it was shown that numerous RNAs are transcribed from these regions. These UCR-encoded transcripts (ucRNAs) were found to be expressed in a tissue- and disease-specific manner and may interfere with the function of other RNAs through RNA: RNA interactions. We hypothesized that ucRNAs have unidentified roles in the pathogenesis of human prostate cancer. In a pilot study, we examined ucRNA expression profiles in human prostate tumors.
Using a custom microarray with 962 probesets representing sense and antisense sequences for the 481 human UCRs, we examined ucRNA expression in resected, fresh-frozen human prostate tissues (57 tumors, 7 non-cancerous prostate tissues) and in cultured prostate cancer cells treated with either epigenetic drugs (the hypomethylating agent, 5-Aza 2′deoxycytidine, and the histone deacetylase inhibitor, trichostatin A) or a synthetic androgen, R1881. Expression of selected ucRNAs was also assessed by qRT-PCR and NanoString®-based assays. Because ucRNAs may function as RNAs that target protein-coding genes through direct and inhibitory RNA: RNA interactions, computational analyses were applied to identify candidate ucRNA:mRNA binding pairs.
We observed altered ucRNA expression in prostate cancer (e.g., uc.106+, uc.477+, uc.363 + A, uc.454 + A) and found that these ucRNAs were associated with cancer development, Gleason score, and extraprostatic extension after controlling for false discovery (false discovery rate < 5% for many of the transcripts). We also identified several ucRNAs that were responsive to treatment with either epigenetic drugs or androgen (R1881). For example, experiments with LNCaP human prostate cancer cells showed that uc.287+ is induced by R1881 (P < 0.05) whereas uc.283 + A was up-regulated following treatment with combined 5-Aza 2′deoxycytidine and trichostatin A (P < 0.05). Additional computational analyses predicted RNA loop-loop interactions of 302 different sense and antisense ucRNAs with 1058 different mRNAs, inferring possible functions of ucRNAs via direct interactions with mRNAs.
This first study of ucRNA expression in human prostate cancer indicates an altered transcript expression in the disease.
PMCID: PMC3626580  PMID: 23409773
Ultraconserved region; Gene expression; Prostate cancer
13.  The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma  
Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3′–untranslated region (3′-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3′-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma.
PMCID: PMC3561838  PMID: 23298836
14.  Functional Analysis of microRNAs in Human Hepatocellular Cancer Stem Cells 
MicroRNAs are endogenous small noncoding RNAs that regulate gene expression and cancer development. A rare population of hepatocellular cancer stem cells (HSCs) holds the extensive proliferative and self-renewal potential necessary to form a liver tumor. We postulated that specific transcriptional factors might regulate the expression of microRNAs and subsequently modulate the expression of gene products involved in phenotypic characteristics of HSCs. We evaluated the expression of microRNA in human HSCs by microarray profiling, and defined the target genes and functional effects of two groups of microRNA regulated by IL-6 and transcriptional factor Twist. A subset of highly chemoresistant and invasive HSCs was screened with aberrant expressions of cytokine IL-6 and Twist. We demonstrated that conserved let-7 and miR-181 family members were up-regulated in HSCs by global microarray-based microRNA profiling followed by validation with real-time PCR. Importantly, inhibition of let-7 increases the chemosensitivity of HSCs to sorafenib and doxorubicin whereas silencing of miR-181 led to a reduction in HSCs motility and invasion. Knocking down IL-6 and Twist in HSCs significantly reduced let-7 and miR-181 expression and subsequently inhibited chemoresistance and cell invasion. We showed that let-7 directly targets SOCS-1 and caspase-3, while miR-181 directly targets RASSF1A, TIMP3 as well as nemo-like kinase (NLK). In conclusion, alterations of IL-6 and Twist regulated microRNA expression in HSCs play a part in tumor spreading and responsiveness to chemotherapy. Our results define a novel regulatory mechanism of let-7/miR-181s suggesting that let-7 and miR-181 may be molecular targets for eradication of hepatocellular malignancies.
PMCID: PMC3116063  PMID: 21352471
microRNAs (miRNAs); Human Hepatocellular Cancer Stem Cells (HSCs); Interleukin-6 (IL-6); Twist; Chemotherapy; Invasion
15.  FOXP3 Orchestrates H4K16 Acetylation and H3K4 Tri-Methylation for Activation of Multiple Genes through Recruiting MOF and Causing Displacement of PLU-1 
Molecular cell  2011;44(5):770-784.
Both H4K16 acetylation and H3K4 tri-methylation are required for gene activation. However, it is still largely unclear how these modifications are orchestrated by transcriptional factors. Here we analyzed the mechanism of the transcriptional activation by FOXP3, an X-linked suppressor of autoimmune diseases and cancers. FOXP3 binds near transcriptional start sites of its target genes. By recruiting MOF and displacing histone H3K4 demethylase PLU-1, FOXP3 increases both H4K16 acetylation and H3K4 tri-methylation at the FOXP3-associated chromatins of multiple FOXP3-activated genes. RNAi-mediated silencing of MOF reduced both gene activation and tumor suppression by FOXP3, while both somatic mutations in clinical cancer samples and targeted mutation of FOXP3 in mouse prostate epithelial disrupted nuclear localization of MOF. Our data demonstrate a pull-push model in which a single transcription factor orchestrates two epigenetic alterations necessary for gene activation and provide a mechanism for somatic inactivation of the FOXP3 protein function in cancer cells.
PMCID: PMC3243051  PMID: 22152480
16.  Microbiotadown regulates dendritic cell expression of miR-10a which targets IL-12/IL-23p40 
Commensal flora plays important roles in the regulation of the gene expression involved in many intestinal functions and the maintenance of immune homeostasis, as well as in the pathogenesis of inflammatory bowel diseases (IBD). The microRNAs (miRNAs), a class of small, non-coding RNAs, act as key regulators in many biological processes. The miRNAs are highly conserved among species and appear to play important roles in both innate and adaptive immunity, as they can control the differentiation of various immune cells as well as their functions. However, it is still largely unknown how microbiota regulates miRNA expression, thereby contributing to intestinal homeostasis and pathogenesis of IBD. In our current study, we found that microbiota negatively regulated intestinal miR-10a expression, in that the intestines, as well as intestinal epithelial cells and dendritic cells of specific pathogen-free (SPF) mice, expressed much lower levels of miR-10a compared to those in germ-free (GF) mice. Commensal bacteria downregulated DC miR-10a expression via TLR-TLR ligand interactions through a MyD88-dependent pathway. We identified IL-12/IL-23p40, a key molecule for innate immune responses to commensal bacteria, as a target of miR-10a. The ectopic expression of miR-10a precursor inhibited, whereas miR-10a inhibitor promoted, the expression of IL-12/IL-23p40 in DC. Mice with colitis expressing higher levels of IL-12/IL-23p40 exhibit lower levels of intestinal miR-10a compared to that in the control mice. Collectively, our data demonstrated that microbiota negatively regulates host miR-10a expression, which may contribute to the maintenance of intestinal homeostasis by targeting IL-12/IL-23p40 expression.
PMCID: PMC3226774  PMID: 22068236
17.  Expression profiling of microRNA using oligo DNA arrays 
Methods (San Diego, Calif.)  2008;44(1):22-30.
After 12 years from its first application, microarray technology has become the reference technique to monitor gene expression of thousands of genes in the same experiment. In the past few years an increasing amount of evidence showed the importance of non coding RNA (ncRNA) in different human diseases. The microRNAs (miRNAs) are one of the groups of ncRNA. They are small RNA fragments, 19–25 nucleotides long, with a main regulatory function on both protein coding genes and non-coding RNAs. The application of microarray platforms applied to miRNA profiling determined their deregulation in virtually all human diseases that have been studied. We previously developed a custom miRNA microarray platform, and here we describe the protocol we used to work with it including the oligo design strategy, the microaray printing protocol, the target-probe hybridization and the signal detection.
PMCID: PMC3321558  PMID: 18158129
18.  MiRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus and associations with survival 
The dismal outcome of esophageal cancer patients highlights the need for novel prognostic biomarkers, such as microRNAs (miRNAs). While recent studies have established the role of miRNAs in esophageal carcinoma, a comprehensive multi-center study investigating different histological types, including squamous cell carcinoma (SCC) and adenocarinoma (ADC) with or without Barrett's, is still lacking.
Experimental Design
MiRNA expression was measured in cancerous and adjacent non-cancerous tissue pairs collected from 100 ADC and 70 SCC patients enrolled at 4 clinical centers from the US, Canada, and Japan. Microarray-based expression was measured in a subset of samples in two cohorts and was validated in all available samples.
In ADC patients, miR-21, miR-223, miR-192, and miR-194 expression was elevated, while miR-203 expression was reduced in cancerous compared to non-cancerous tissue. In SCC patients, we found elevated miR-21 and reduced mir-375 expression levels in cancerous compared to non-cancerous tissue. When comparing cancerous tissue expression between ADC and SCC patients, mir-194 and mir-375 were elevated in ADC patients. Significantly, elevated mir-21 expression in non-cancerous tissue of SCC patients and reduced levels of mir-375 in cancerous tissue of ADC patients with Barrett's were strongly associated with worse prognosis. Associations with prognosis were independent of tumor stage or nodal status, cohort type, and chemoradiation therapy.
Our multi-center-based results highlight miRNAs involved in major histological types of esophageal carcinoma and uncover significant associations with prognosis. Elucidating miRNAs relevant to esophageal carcinogenesis is potentially clinically useful for developing prognostic biomarkers and identifying novel drug targets and therapies.
PMCID: PMC2933109  PMID: 19789312
microRNA; esophageal cancer; prognosis; Barrett's; expression profiling
19.  Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells 
Autophagy  2009;5(6):816-823.
beclin 1, the mammalian homologue of the yeast Atg6, is a key autophagy-promoting gene that plays a critical role in the regulation of cell death and survival of various types of cells. However, recent studies have observed that the expression of beclin 1 is altered in certain diseases including cancers. The causes underlying the aberrant expression of beclin 1 remain largely unknown. We report here that microRNAs (miRNAs), a class of endogenous, 22–24 nucleotide noncoding RNA molecules able to affect stability and translation of mRNA, may represent a previously unrecognized mechanism for regulating beclin 1 expression and autophagy. We demonstrated that beclin 1 is a potential target for miRNA miR-30a, and this miRNA could negatively regulate beclin 1 expression resulting in decreased autophagic activity. Treatment of tumor cells with the miR-30a mimic decreased, and with the antagomir increased, the expression of beclin 1 mRNA and protein. Dual luciferase reporter assay confirmed that the miR-30a binding sequences in the 3′-UTR of beclin 1 contribute to the modulation of beclin 1 expression by miR-30a. Furthermore, inhibition of beclin 1 expression by the miR-30a mimic blunted activation of autophagy induced by rapamycin. Our study of the role of miR-30a in regulating beclin 1 expression and autophagy reveals a novel function for miRNA in a critical cellular event with significant impacts in cancer development, progression and treatment, and in other diseases.
PMCID: PMC3669137  PMID: 19535919
beclin 1; autophagy; microRNA; miR-30a; gene expression
20.  Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states 
BMC Systems Biology  2010;4:85.
The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario.
We developed serum-free liquid suspension unilineage cultures of cord blood (CB) CD34+ hematopoietic progenitor cells through erythroid (E), megakaryocytic (MK), granulocytic (G) and monocytic (Mo) pathways. These cultures recapitulate physiological hematopoiesis, allowing the analysis of almost pure unilineage precursors starting from initial differentiation of HPCs until terminal maturation. By analyzing the expression profile of protein coding genes and microRNAs in unilineage CB E, MK, G and Mo cultures, at sequential stages of differentiation and maturation, we observed a coordinated, fully interconnected and scalable character of cell population behaviour in both transcriptome and miRNome spaces reminiscent of an attractor-like dynamics. MiRNome and transcriptome space differed for a still not terminally committed behaviour of microRNAs.
Consistent with their roles, the transcriptome system can be considered as the state space of a cell population, while the continuously evolving miRNA space corresponds to the tuning system necessary to reach the attractor. The behaviour of miRNA machinery could be of great relevance not only for the promise of reversing the differentiated state but even for tumor biology.
PMCID: PMC2904736  PMID: 20553595
21.  MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3 
Cell cycle (Georgetown, Tex.)  2009;8(5):736-741.
Human myeloid leukemia cells exposed to 1,25-dihydroxyvitamin D3 (1,25D), a major cancer chemopreventive agent, acquire features of normal monocytes and arrest in the G1 phase of the cell cycle, due to the upregulation of p27Kip1 and p21Cip1, but the mechanism is not clear. Here evidence is provided that an exposure of HL60 and U937 cells to low (1–10 nM) concentrations of 1,25D decreases the expression of miR181a and miR181b in a concentration and time-dependent manner. Since the predicted miR181 targets include the 3'-UTR of p27Kip1, we expressed pre-miR181a in these cells, and found that the elevation of cellular miR181a levels abrogates the 1,25D-induced increase in p27Kip1 at both mRNA and protein levels. In contrast, transfection of pre-miR181a resulted in a slight elevation of p21Cip1 expression. Importantly, transfection of pre-miR181a blunted the effect of 1,25D on the expression of monocytic differentiation markers, and reduced the G1 block in 1,25D-treated cells, while transfection of anti-miR181a increased 1,25D-induced differentiation. Together, these data show that miR181a participates in 1,25D-induced differentiation of HL60 and U937 cells, and suggest that a high constitutive expression of members of miR181 family may contribute to the malignant phenotype in the myeloid lineage.
PMCID: PMC2804747  PMID: 19221487
MicroRNA 181; vitamin D; p27Kip1; p21Cip1; myeloid leukemia; differentiation
22.  Zinc Replenishment Reverses Overexpression of the Proinflammatory Mediator S100A8 and Esophageal Preneoplasia in the Rat 
Gastroenterology  2008;136(3):953-966.
Background & Aims
Zinc-deficiency is implicated in the pathogenesis of human esophageal cancer. In the rat esophagus, it induces cell proliferation, modulates genetic expression, and enhances carcinogenesis. Zinc-replenishment reverses proliferation and inhibits carcinogenesis. The zinc-deficient rat model allows the identification of biological differences affected by zinc during early esophageal carcinogenesis.
We evaluated gene expression profiles of esophageal epithelia from zinc-deficient and replenished rats versus sufficient rats using Affymetrix Rat Genome GeneChip. We characterized the role of the top-upregulated gene S100A8 in esophageal hyperplasia/reversal and in chemically-induced esophageal carcinogenesis in zinc-modulated animals by immunohistochemistry and real-time quantitative polymerase chain reaction.
The hyperplastic deficient esophagus has a distinct expression signature with the proinflammation-gene S100A8 and S100A9 upregulated 57- and 5-fold. “Response to external stimulus” comprising S100A8 was the only significantly overrepresented biological pathway among the upregulated genes. Zinc-replenishment rapidly restored to control levels the expression of S100A8/A9 and 27 other genes and reversed the hyperplastic phenotype. With its receptor RAGE, co-localization and overexpression of S100A8 protein occurred in the deficient esophagus that overexpressed NF-κB p65 and COX-2 protein. Zinc-replenishment but not by a COX-2 inhibitor reduced the overexpression of these 4 proteins. Additionally, esophageal S100A8/A9 mRNA levels were directly associated with the diverse tumorigenic outcome in zinc-deficient and zinc-replenished rats.
In vivo zinc regulates S100A8 expression and modulates the link between S100A8-RAGE interaction and downstream NF-κB/COX-2 signaling. The finding that zinc regulates an inflammatory pathway in esophageal carcinogenesis may lead to prevention and therapy for this cancer.
PMCID: PMC2650087  PMID: 19111725
23.  MicroRNA Microarray Identifies Let-7i as a Novel Biomarker and Therapeutic Target in Human Epithelial Ovarian Cancer 
Cancer research  2008;68(24):10307-10314.
MicroRNAs (miRNA) are approximately 22-nucleotide non-coding RNAs that negatively regulate protein-coding gene expression in a sequence-specific manner via translational inhibition or mRNA degradation. Our recent studies showed that miRNAs exhibit genomic alterations at a high frequency and their expression is remarkably deregulated in ovarian cancer, strongly suggesting that miRNAs are involved in the initiation and progression of this disease. In the present study, we performed miRNA microarray to identify the miRNAs associated with chemotherapy response in ovarian cancer and found that let-7i expression was significantly reduced in chemotherapy-resistant patients (n = 69, P = 0.003). This result was further validated by stem-loop real-time reverse transcription-PCR (n = 62, P = 0.015). Both loss-of-function (by synthetic let-7i inhibitor) and gain-of-function (by retroviral overexpression of let-7i) studies showed that reduced let-7i expression significantly increased the resistance of ovarian and breast cancer cells to the chemotherapy drug, cis-platinum. Finally, using miRNA microarray, we found that decreased let-7i expression was significantly associated with the shorter progression-free survival of patients with late-stage ovarian cancer (n = 72, P = 0.042). This finding was further validated in the same sample set by stem-loop real-time reverse transcription-PCR (n = 62, P = 0.001) and in an independent sample set by in situ hybridization (n = 53, P = 0.049). Taken together, our results strongly suggest that let-7i might be used as a therapeutic target to modulate platinum-based chemotherapy and as a biomarker to predict chemotherapy response and survival in patients with ovarian cancer.
PMCID: PMC2762326  PMID: 19074899
24.  Prognostic Significance of, and Gene and MicroRNA Expression Signatures Associated With, CEBPA Mutations in Cytogenetically Normal Acute Myeloid Leukemia With High-Risk Molecular Features: A Cancer and Leukemia Group B Study 
Journal of Clinical Oncology  2008;26(31):5078-5087.
To evaluate the prognostic significance of CEBPA mutations in the context of established molecular markers in cytogenetically normal (CN) acute myeloid leukemia (AML) and gain biologic insights into leukemogenesis of the CN-AML molecular high-risk subset (FLT3 internal tandem duplication [ITD] positive and/or NPM1 wild type) that has a significantly higher incidence of CEBPA mutations than the molecular low-risk subset (FLT3-ITD negative and NPM1 mutated).
Patients and Methods
One hundred seventy-five adults age less than 60 years with untreated primary CN-AML were screened before treatment for CEBPA, FLT3, MLL, WT1, and NPM1 mutations and BAALC and ERG expression levels. Gene and microRNA (miRNA) expression profiles were obtained for the CN-AML molecular high-risk patients.
CEBPA mutations predicted better event-free (P = .007), disease-free (P = .014), and overall survival (P < .001) independently of other molecular and clinical prognosticators. Among patients with CEBPA mutations, 91% were in the CN-AML molecular high-risk group. Within this group, CEBPA mutations predicted better event-free (P < .001), disease-free (P = .004), and overall survival (P = .009) independently of other molecular and clinical characteristics and were associated with unique gene and miRNA expression profiles. The major features of these profiles were upregulation of genes (eg, GATA1, ZFPM1, EPOR, and GFI1B) and miRNAs (ie, the miR-181 family) involved in erythroid differentiation and downregulation of homeobox genes.
Pretreatment testing for CEBPA mutations identifies CN-AML patients with different outcomes, particularly in the molecular high-risk group, thus improving molecular risk-based classification of this large cytogenetic subset of AML. The gene and miRNA expression profiling provided insights into leukemogenesis of the CN-AML molecular high-risk group, indicating that CEBPA mutations are associated with partial erythroid differentiation.
PMCID: PMC2652095  PMID: 18809607
25.  Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer 
Cancer research  2008;68(15):6162-6170.
MicroRNAs are small non-coding RNAs that regulate the expression of protein-coding genes. To evaluate the involvement of microRNAs in prostate cancer, we determined genome-wide expression of microRNAs and mRNAs in 60 primary prostate tumors and 16 non-tumor prostate tissues. The mRNA analysis revealed that key components of microRNA processing and several microRNA host genes, e.g., MCM7 and C9orf5, were significantly up-regulated in prostate tumors. Consistent with these findings, tumors expressed the miR-106b-25 cluster, which maps to intron 13 of MCM7, and miR-32, which maps to intron 14 of C9orf5, at significantly higher levels than non-tumor prostate. The expression levels of other microRNAs, including a number of miR-106b-25 cluster homologues, were also altered in prostate tumors. Additional differences in microRNA abundance were found between organ-confined tumors and those with extraprostatic disease extension. Lastly, we found evidence that some microRNAs are androgen-regulated and that tumor microRNAs influence transcript abundance of protein-coding target genes in the cancerous prostate. In cell culture, E2F1 and p21/WAF1 were identified as targets of miR-106b, Bim of miR-32, and exportin-6 and protein tyrosine kinase 9 of miR-1. In summary, microRNA expression becomes altered with the development and progression of prostate cancer. Some of these microRNAs regulate the expression of cancer-related genes in prostate cancer cells.
PMCID: PMC2597340  PMID: 18676839
Prostate cancer; microRNA; gene expression profile

Results 1-25 (33)