Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
2.  Discrimination of sepsis stage metabolic profiles with an LC/MS-MS-based metabolomics approach 
BMJ Open Respiratory Research  2014;1(1):e000056.
To identify metabolic biomarkers that can be used to differentiate sepsis from systemic inflammatory response syndrome (SIRS), assess severity and predict outcomes.
65 patients were involved in this study, including 35 patients with sepsis, 15 patients with SIRS and 15 normal patients. Small metabolites that were present in patient serum samples were measured by liquid chromatography mass spectrometry techniques and analysed using multivariate statistical methods.
The metabolic profiling of normal patients and patients with SIRS or sepsis was markedly different. A significant decrease in the levels of lactitol dehydrate and S-phenyl-d-cysteine and an increase in the levels of S-(3-methylbutanoyl)-dihydrolipoamide-E and N-nonanoyl glycine were observed in patients with sepsis in comparison to patients with SIRS (p<0.05). Patients with severe sepsis and septic shock displayed lower levels of glyceryl-phosphoryl-ethanolamine, Ne, Ne dimethyllysine, phenylacetamide and d-cysteine (p<0.05) in their sera. The profiles of patients with sepsis 48 h before death illustrated an obvious state of metabolic disorder, such that S-(3-methylbutanoyl)-dihydrolipoamide-E, phosphatidylglycerol (22:2 (13Z, 16Z)/0:0), glycerophosphocholine and S-succinyl glutathione were significantly decreased (p<0.05). The receiver operating characteristic curve of the differential expression of these metabolites was also performed.
The body produces significant evidence of metabolic disorder during SIRS or sepsis. Seven metabolites may potentially be used to diagnose sepsis.
Trial registration number identifier NCT01649440.
PMCID: PMC4265126  PMID: 25553245
Respiratory Infection
3.  A Multi-Center, Cross-Sectional Study on the Burden of Infectious Keratitis in China 
PLoS ONE  2014;9(12):e113843.
To understand the prevalence and demographic characteristics of infectious keratitis and infectious corneal blindness.
A multi-center, population-based cross-sectional study was conducted from January 1 to August 31, 2010. A total of 191,242 individuals of all age groups from 10 geographically representative provinces were sampled using stratified, multi-stage, random and systematic sampling procedures. A majority, 168,673 (88.2%), of those sampled participated in the study. The examination protocol included a structured interview, visual acuity testing, an external eye examination, and an anterior segment examination using a slit lamp. The causes and sequelae of corneal disease were identified using uniform customized protocols. Blindness in one eye caused by infectious keratitis was defined as infectious corneal blindness.
The prevalence of past and active infectious keratitis was 0.192% (95% confidence interval [CI], 0.171–0.213%), and the prevalence of viral, bacterial, and fungal keratitis was 0.11%, 0.075%, and 0.007%, respectively. There were 138 cases of infectious corneal blindness in at least one eye in the study population (prevalence of 0.082% [95%CI, 0.068%–0.095%]). Statistical analysis suggested that ocular trauma, alcoholic consumption, low socioeconomic levels, advanced age, and poor education were risk factors for infectious corneal blindness.
Infectious keratitis is the leading cause of corneal blindness in China. Eye care strategies should focus on the prevention and rehabilitation of infectious corneal blindness.
PMCID: PMC4250054  PMID: 25438169
4.  ROCK Inhibitor Y-27632 Increases the Cloning Efficiency of Limbal Stem/Progenitor Cells by Improving Their Adherence and ROS-Scavenging Capacity 
Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 has been shown to increase proliferative capacity and even immortalize primary keratinocytes. Here, we demonstrate that rabbit primary limbal epithelial cells (LECs) treated with Y-27632 also exhibited improved colony-forming efficiency by enhancing the expansion of the stem/progenitor cells. Moreover, Y-27632 treatment improved the rapid adherence of limbal stem/progenitor cells in the initial inoculation of primary cells. In addition, Y-27632 treatment elevated the intracellular glutathione level and decreased cellular reactive oxygen species (ROS) accumulation during the expansion of LECs. Therefore, ROCK inhibitor Y-27632 increased the cloning efficiency of rabbit limbal stem/progenitor cells by improving their adherence and ROS scavenging capacity.
PMCID: PMC3662381  PMID: 23151007
5.  Laboratory analyses of two explanted hydrophobic acrylic intraocular lenses 
Indian Journal of Ophthalmology  2014;62(6):737-739.
Two three-piece hydrophobic acrylic intraocular lenses (IOLs) were explanted from two patients at 7 and 9 years, respectively, after implantation, because of poor fundus visualisation and/or a clinically significant decrease in visual acuity related to their opacified IOLs. In addition to light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, confocal laser scanning microscopy was used for the first time to observe the explanted IOLs. The clinical aspect seemed to correspond to the phenomenon of surface light scattering, while laboratory analyses showed dense glistenings in the central layer of the IOL optic, which had no change next to the surface. Further studies on these phenomena are needed.
PMCID: PMC4131335  PMID: 25005210
Glistenings; hydrophobic acrylic; intraocular lens
6.  Diagnostic Value of Dynamics Serum sCD163, sTREM-1, PCT, and CRP in Differentiating Sepsis, Severity Assessment, and Prognostic Prediction 
Mediators of Inflammation  2013;2013:969875.
Objective. To describe the dynamics changes of sCD163, soluble serum triggering receptor expressed on myeloid cells-1 (sTREM-1), procalcitonin (PCT), and C-reactive protein (CRP) during the course of sepsis, as well as their outcome prediction. Patients and Methods. An SIRS group (30 cases) and a sepsis group (100 cases) were involved in this study. Based on a 28-day survival, the sepsis was further divided into the survivors' and nonsurvivors' groups. Serum sTREM-1, sCD163, PCT, CRP, and WBC counts were tested on days 1, 3, 5, 7, 10, and 14. Results. On the ICU admission, the sepsis group displayed higher levels of sTREM-1, sCD163, PCT, and CRP than the SIRS group (P < 0.05). Although PCT and sTREM-1 are good markers to identify severity, sTREM-1 is more reliable, which proved to be a risk factor related to sepsis. During a 14-day observation, sCD163, sTREM-1, PCT, and SOFA scores continued to climb among nonsurvivors, while their WBC and CRP went down. Both sCD163 and SOFA scores are risk factors impacting the survival time. Conclusion. With regard to sepsis diagnosis and severity, sTREM-1 is more ideal and constitutes a risk factor. sCD163 is of a positive value in dynamic prognostic assessment and may be taken as a survival-impacting risk factor.
PMCID: PMC3713373  PMID: 23935252
7.  Identification of Novel Biomarkers for Sepsis Prognosis via Urinary Proteomic Analysis Using iTRAQ Labeling and 2D-LC-MS/MS 
PLoS ONE  2013;8(1):e54237.
Sepsis is the major cause of death for critically ill patients. Recent progress in proteomics permits a thorough characterization of the mechanisms associated with critical illness. The purpose of this study was to screen potential biomarkers for early prognostic assessment of patients with sepsis.
For the discovery stage, 30 sepsis patients with different prognoses were selected. Urinary proteins were identified using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS. Mass spec instrument analysis were performed with Mascot software and the International Protein Index (IPI); bioinformatic analyses were used by the algorithm of set and the Gene Ontology (GO) Database. For the verification stage, the study involved another 54 sepsis-hospitalized patients, with equal numbers of patients in survivor and non-survivor groups based on 28-day survival. Differentially expressed proteins were verified by Western Blot.
A total of 232 unique proteins were identified. Proteins that were differentially expressed were further analyzed based on the pathophysiology of sepsis and biomathematics. For sepsis prognosis, five proteins were significantly up-regulated: selenium binding protein-1, heparan sulfate proteoglycan-2, alpha-1-B glycoprotein, haptoglobin, and lipocalin; two proteins were significantly down-regulated: lysosome-associated membrane proteins-1 and dipeptidyl peptidase-4. Based on gene ontology clustering, these proteins were associated with the biological processes of lipid homeostasis, cartilage development, iron ion transport, and certain metabolic processes. Urinary LAMP-1 was down-regulated, consistent with the Western Blot validation.
This study provides the proteomic analysis of urine to identify prognostic biomarkers of sepsis. The seven identified proteins provide insight into the mechanism of sepsis. Low urinary LAMP-1 levels may be useful for early prognostic assessment of sepsis.
Trial Registration NCT01493492
PMCID: PMC3553154  PMID: 23372690
8.  Mutation analysis of paired box 6 gene in inherited aniridia in northern China 
Molecular Vision  2013;19:1169-1177.
Aniridia is phenotypically and genetically heterogeneous. This study is to summarize the phenotypes and identify the underlying genetic cause of the paired box 6 (PAX6) gene responsible for aniridia in two three-generation Chinese families in northern China.
A detailed family history and clinical data were collected from patients during an ophthalmologic examination. All exons and flanking intronic sequences of the PAX6 gene were amplified with PCR and screened for mutation with direct DNA sequencing. Haplotyping was used to confirm the mutation sequence. Real-time PCR was used to determine the PAX6 messenger ribonucleic acid(mRNA) level in patients with aniridia and in unaffected family members.
The probands and other patients in the two families were affected with aniridia accompanied with or without congenital cataract. A heterozygous PAX6 mutation in exon 5 (c.112delC, p.Arg38GlyfsX16) was identified in FAMILY-1, which was predicted to generate a frameshift and created a premature termination codon. A heterozygous PAX6 mutation in exon 7 (c.362C>T, p.Ser121Leu) was identified in FAMILY-2. Each mutation cosegregated with the affected individuals in the family and did not exist in unaffected family members and 200 unrelated normal controls. The PAX6 messenger ribonucleic acid level was about 50% lower in patients with aniridia than in unaffected family members in FAMILY-1.
The deletion mutation (c.112delC) in the PAX6 gene was first identified in a Chinese family with aniridia, congenital progressive cataract, developmental delay, or the absence of ulna. The mutation (c.362C>T, p.Ser121Leu) in the PAX6 gene was first identified in a patient with aniridia with congenital ptosis. We summarized the variable phenotypes among the patients, which expanded the phenotypic spectrum of aniridia in a different ethnic background.
PMCID: PMC3669533  PMID: 23734086
9.  Diagnostic value of urine sCD163 levels for sepsis and relevant acute kidney injury: a prospective study 
BMC Nephrology  2012;13:123.
Sepsis is a common syndrome in critically ill patients and easily leads to the occurrence of acute kidney injury (AKI), with high mortality rates. This study aimed to investigate the diagnostic value of urine soluble CD163 (sCD163) for identification of sepsis, severity of sepsis, and for secondary AKI, and to assess the patients’ prognosis.
We enrolled 20 cases with systemic inflammatory response syndrome (SIRS), 40 cases with sepsis (further divided into 17 sepsis cases and 23 severe sepsis cases) admitted to the intensive care unit (ICU), and 20 control cases. Results for urine sCD163 were recorded on the day of admission to the ICU, and AKI occurrence was noted.
On the day of ICU admission, the sepsis group exhibited higher levels of urine sCD163 (74.8 ng/ml; range: 47.9-148.3 ng/ml) compared with those in the SIRS group (31.9 ng/ml; 16.8-48.0, P < 0.001). The area under the curve (AUC) was 0.83 (95% confidence interval [CI]: 0.72-0.94, P < 0.001) the sensitivity was 0.83, and the specificity was 0.75 (based on a cut-off point of 43.0 ng/ml). Moreover, the severe sepsis group appeared to have a higher level of sCD163 compared with that in the sepsis group (76.2; 47.2-167.5 ng/ml vs. 74.2; 46.2-131.6 ng/ml), but this was not significant. For 15 patients with AKI, urine sCD163 levels at AKI diagnosis were significantly higher than those of the remaining 35 sepsis patients upon ICU admission (121.0; 74.6-299.1 ng/ml vs. 61.8; 42.8-128.3 ng/ml, P = 0.049). The AUC for urine sCD163 was 0.688 (95% CI: 0.51-0.87, P = 0.049). Sepsis patients with a poor prognosis showed a higher urine sCD163 level at ICU admission (98.6; 50.3-275.6 ng/ml vs. 68.0; 44.8-114.5 ng/ml), but this was not significant. Patients with AKI with a poor prognosis had higher sCD163 levels than those in patients with a better prognosis (205.9; 38.6-766.0 ng/ml vs. 80.9; 74.9-141.0 ng/ml), but this was not significant.
This study shows, for the first time, the potential value of urine sCD163 levels for identifying sepsis and diagnosing AKI, as well as for assessment of patients’ prognosis.
Trial Registration
PMCID: PMC3506529  PMID: 23013330
Urine; Soluble CD163 (sCD163); Sepsis; Systemic inflammatory response syndrome (SIRS); Prognosis; Acute kidney injury (AKI)
10.  Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study 
BMC Infectious Diseases  2012;12:157.
The purpose of this study was to explore the diagnostic value of soluble triggering receptor expressed on myeloid cells 1 (sTREM-1), procalcitonin (PCT), and C-reactive protein (CRP) serum levels for differentiating sepsis from SIRS, identifying new fever caused by bacteremia, and assessing prognosis when new fever occurred.
We enrolled 144 intensive care unit (ICU) patients: 60 with systemic inflammatory response syndrome (SIRS) and 84 with sepsis complicated by new fever at more than 48 h after ICU admission. Serum sTREM-1, PCT, and CRP levels were measured on the day of admission and at the occurrence of new fever (>38.3°C) during hospitalization. Based on the blood culture results, the patients were divided into a blood culture-positive bacteremia group (33 patients) and blood culture-negative group (51 patients). Based on 28-day survival, all patients, both blood culture-positive and -negative, were further divided into survivor and nonsurvivor groups.
On ICU day 1, the sepsis group had higher serum sTREM-1, PCT, and CRP levels compared with the SIRS group (P <0.05). The areas under the curve (AUC) for these indicators were 0.868 (95% CI, 0.798–0.938), 0.729 (95% CI, 0.637–0.821), and 0.679 (95% CI, 0.578–0.771), respectively. With 108.9 pg/ml as the cut-off point for serum sTREM-1, sensitivity was 0.83 and specificity was 0.81. There was no statistically significant difference in serum sTREM-1 or PCT levels between the blood culture-positive and -negative bacteremia groups with ICU-acquired new fever. However, the nonsurvivors in the blood culture-positive bacteremia group had higher levels of serum sTREM-1 and PCT (P <0.05), with a prognostic AUC for serum sTREM-1 of 0.868 (95% CI, 0.740–0.997).
Serum sTREM-1, PCT, and CRP levels each have a role in the early diagnosis of sepsis. Serum sTREM-1, with the highest sensitivity and specificity of all indicators studied, is especially notable. sTREM-1, PCT, and CRP levels are of no use in determining new fever caused by bacteremia in ICU patients, but sTREM-1 levels reflect the prognosis of bacteremia.
Trial registration identifier NCT01410578
PMCID: PMC3426475  PMID: 22809118
Soluble triggering receptor expressed on myeloid cells 1 (sTREM-1); Fever; Sepsis; Bacteremia; Diagnosis; Prognosis
11.  Serum MicroRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study 
PLoS ONE  2012;7(6):e38885.
Sepsis is the leading cause of death in Intensive Care Units. Novel sepsis biomarkers and targets for treatment are needed to improve mortality from sepsis. MicroRNAs (miRNAs) have recently been used as finger prints for sepsis, and our goal in this prospective study was to investigate if serum miRNAs identified in genome-wide scans could predict sepsis mortality.
Methodology/Principal Findings
We enrolled 214 sepsis patients (117 survivors and 97 non-survivors based on 28-day mortality). Solexa sequencing followed by quantitative reverse transcriptase polymerase chain reaction assays was used to test for differences in the levels of miRNAs between survivors and non-survivors. miR-223, miR-15a, miR-16, miR-122, miR-193*, and miR-483-5p were significantly differentially expressed. Receiver operating characteristic curves were generated and the areas under the curve (AUC) for these six miRNAs for predicting sepsis mortality ranged from 0.610 (95%CI: 0.523–0.697) to 0.790 (95%CI: 0.719–0.861). Logistic regression analysis showed that sepsis stage, Sequential Organ Failure Assessment scores, Acute Physiology and Chronic Health Evaluation II scores, miR-15a, miR-16, miR-193b*, and miR-483-5p were associated with death from sepsis. An analysis was done using these seven variables combined. The AUC for these combined variables’ predictive probability was 0.953 (95% CI: 0.923–0.983), which was much higher than the AUCs for Acute Physiology and Chronic Health Evaluation II scores (0.782; 95% CI: 0.712–0.851), Sequential Organ Failure Assessment scores (0.752; 95% CI: 0.672–0.832), and procalcitonin levels (0.689; 95% CI: 0.611–0.784). With a cut-off point of 0.550, the predictive value of the seven variables had a sensitivity of 88.5% and a specificity of 90.4%. Additionally, miR-193b* had the highest odds ratio for sepsis mortality of 9.23 (95% CI: 1.20–71.16).
Six serum miRNA’s were identified as prognostic predictors for sepsis patients.
Trial Registration NCT01207531
PMCID: PMC3376145  PMID: 22719975
12.  Histological Evaluation of Corneal Scar Formation in Pseudophakic Bullous Keratopathy 
PLoS ONE  2012;7(6):e39201.
To evaluate histological changes in the corneal stroma in pseudophakic bullous keratopathy.
Twenty-eight patients (28 eyes) with pseudophakic bullous keratopathy underwent therapeutic penetrating keratoplasty at Shandong Eye Institute between January 2006 and November 2011. The patients were divided into two groups according to the duration of bullous keratopathy (<1.0 year group or >1.0 year group), and three buttons from enucleated eyes with choroidal melanoma served as a control. In vivo confocal microscopy examination, hematoxylin–eosin, Masson's trichrome stain and Van Gieson staining were used for microscopic examination. The histological evaluation and scoring of the buttons for morphological changes, including the degree of stromal scars, neovascularization and inflammatory cells within the corneal buttons, were compared. To study the underlying mechanism, connective tissue growth factor (CTGF) and TGF-β immunohistochemistry were performed.
Confocal microscopy examination and histological evaluation and scoring of the buttons showed that compared with the <1.0 year group, stromal scars, neovascularization and inflammatory cells were more severe in the >1.0 year group (P<0.05). There was an increase in CTGF- and TGF-β1-positive stromal cells in the >1.0 year group.
During the progression of pseudophakic bullous keratopathy, stromal scars occurred more often in the patients that had a longer duration of disease. Cytokines such as CTGF and TGF-β1 may play a role in this pathological process and deserve further investigation.
PMCID: PMC3375240  PMID: 22720074
13.  Inhibition of VEGF expression and corneal neovascularization by shRNA targeting HIF-1α in a mouse model of closed eye contact lens wear 
Molecular Vision  2012;18:864-873.
Inappropriate contact lens (CL) use and care often lead to corneal neovascularization (corneal NV). We used mouse eyes which wore CL as the animal model to assess the reason for corneal NV with CL wear. The similar and overlapping activity of vascular endothelial growth factor (VEGF) and the potent angiogenic hypoxia-inducible factor 1α (HIF-1α) called for a study of the temporal relationship in the expression of these two autocoids. We determined the time dependent expression of HIF-1α and correlated it to that of VEGF expression in the mouse model of closed eye with CL wear.
Mouse eyes were fitted with CL followed by a silk suture tarsorrhaphy. The anterior surface was analyzed at 4, 7, and 10 days after tarsorrhaphy by slit lamp and corneal NV. HIF-1α and VEGF levels were measured by reverse transcription PCR, western blotting and immunofluorescence with specific primers and antibodies. We used shRNA targeting HIF-1α to substantiate the link between HIF-1α, VEGF expression, and angiogenesis in the CL wear model.
Corneal NV scores increased in a time dependent manner in the model of closed eye CL induced hypoxic injury. Corneal epithelial HIF-1α and VEGF expression increased in a time dependent manner. The prolonged hypoxic state brought by closed eye CL wear induced a time dependent neovascular response which was significantly attenuated by HIF-1α specific shRNA but not by nonspecific shRNA. Both HIF-1α and VEGF levels were reduced significantly in corneal homogenates from eyes treated with the HIF-1α specific shRNA.
The present study documented the increased expression of HIF-1α in the corneal epithelium during CL wear. It also demonstrated the presence of VEGF in the corneal epithelium and its increased expression in this model. Altogether, the results of this study raised the possibility of interaction between HIF-1α and VEGF, in mediating the neovascularization response induced by the prolonged hypoxic state brought about by closed eye CL wear. The results strongly implicated corneal HIF-1α as a component of the inflammatory and neovascular cascade initiated by hypoxic and further suggested that HIF-1α was a proximal regulator of VEGF expression in this model.
PMCID: PMC3327437  PMID: 22511848
14.  Dynamic changes of serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) reflect sepsis severity and can predict prognosis: a prospective study 
We examined the utility of serum levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) for the diagnoses, severity assessments, and predicting the prognoses of patients with sepsis and compared sTREM-1 values with those of C-reactive protein (CRP) and procalcitonin (PCT).
Fifty-two patients with sepsis were included: 15 sepsis cases and 37 severe sepsis cases (severe sepsis + septic shock). Serum levels of sTREM-1, CRP, and PCT were determined on days 1, 3, 5, 7, 10, and 14 after admission to an ICU.
Serum sTREM-1 levels of patients with severe sepsis were significantly higher than for those with sepsis on day 1 (240.6 pg/ml vs. 118.3 pg/ml; P < 0.01), but CRP and PCT levels were not significantly different between the two groups. The area under an ROC curve for sTREM-1 for severe sepsis patients was 0.823 (95% confidence interval: 0.690-0.957). Using 222.5 pg/ml of sTREM-1 as the cut-off value, the sensitivity was 59.5%, the specificity was 93.3%, the positive predictive value was 95.6%, the negative predictive value was 48.3%, the positive likelihood ratio was 8.92, and the negative likelihood ratio was 0.434. Based on 28-day survivals, sTREM-1 levels in the surviving group showed a tendency to decrease over time, while they tended to gradually increase in the non-surviving group. sTREM-1 levels in the non-surviving group were higher than those in the surviving group at all time points, whereas CRP and PCT levels showed a tendency to decrease over time in both groups. sTREM-1 levels and Sequential Organ Failure Assessment (SOFA) scores were positively correlated (r = 0.443; P < 0.001), and this correlation coefficient was greater than the correlation coefficients for both CRP and PCT.
Serum sTREM-1 levels reflected the severity of sepsis more accurately than those of CRP and PCT and were more sensitive for dynamic evaluations of sepsis prognosis.
Trial Registration
Current controlled trials ChiCTR-OCH-09000745
PMCID: PMC3056794  PMID: 21356122
15.  Activation of focal adhesion kinase enhances the adhesion of Fusarium solani to human corneal epithelial cells via the tyrosine-specific protein kinase signaling pathway 
Molecular Vision  2011;17:638-646.
To determine the role of the integrin-FAK signaling pathway triggered by the adherence of F. solani to human corneal epithelial cells (HCECs).
After pretreatment with/without genistein, HCECs were incubated with F. solani spores at different times (0–24 h). Cell adhesion assays were performed by optical microscopy. Changes of the ultrastructure were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of F-actin and Paxillin (PAX) were detected by immunofluorescence and western blotting to detect the expression of these key proteins with/without genistein treatment.
Cell adhesion assays showed that the number of adhered spores began to rise at 6 h after incubation and peaked at 8 h. SEM and TEM showed that the HCECs exhibited a marked morphological alteration induced by the attachment and entry of the spores. The expression of PAX increased, while the expression of F-actin decreased by stimulation with F. solani. The interaction of F. solani with HCECs causes actin rearrangement in HCECs. Genistein strongly inhibited FAK phosphorylation and the activation of the downstream protein (PAX). F. solani-induced enhancement of cell adhesion ability was inhibited along with the inhibition of FAK phosphorylation.
Our results suggest that the integrin-FAK signaling pathway is involved in the control of F. solani adhesion to HCECs and that the activation of focal adhesion kinase enhances the adhesion of human corneal epithelial cells to F. solani via the tyrosine-specific protein kinase signaling pathway.
PMCID: PMC3056129  PMID: 21403855
16.  Pleural aspergillosis complicated by recurrent pneumothorax: a case report 
Pneumothorax as the first symptom of pleural aspergillosis is rare.
Case presentation
A 31-year-old asthmatic Chinese man presented with recurrent spontaneous pneumothorax and underwent lobectomy due to persistent air leakage. Aspergillus was detected histopathologically in the visceral pleural cavity. He was treated with itraconazole at 200 mg a day, and nine months later he had no recurrent pneumothorax or aspergillus infection.
Recurrent pneumothorax may be a rare manifestation of aspergillus infection. Aspergillus species infection should be considered in the differential diagnosis of recurrent pneumothorax patients, particularly those with chronic lung disease.
PMCID: PMC2898700  PMID: 20565739
17.  Hyper-IgE Syndrome with STAT3 Mutation: A Case Report in Mainland China 
Hyper-immunoglobulin E syndromes (HIES) including compound primary immunodeficiency and nonimmunological abnormalities are characterized by extremely high serum IgE levels, eosinophilia, eczema, susceptibility to infections, distinctive facial appearance, retention of deciduous teeth, cyst-forming pneumonias, and skeletal abnormalities. Itis reported that some cases of familial HIES are relative to autosomal dominant or recessive inheritance, but most cases are sporadic, and result from mutations in the human signal transducer and activator of transcription 3 (STAT3) gene. In this paper, we firstly report a young man diagnosed of Hyper-IgE syndrome with STAT3 mutation in Mainland China, and investigate the autosomal dominant trait of his family members.
PMCID: PMC2871547  PMID: 20490271
18.  Multi-gene targeted antiangiogenic therapies for experimental corneal neovascularization 
Molecular Vision  2010;16:310-319.
To determine the effectiveness of multigene-based anti-angiogenic gene therapies for experimental murine corneal neovascularization (corneal NV).
Recombinant retroviral vectors encoding murine endostatin (mEndo), murine-soluble vascular endothelial growth factor receptor-2 (msFlk-1), or murine-soluble Tie2 (msTie2) were constructed and packaged in PT67 cells. Viral titers were determined by infection of NIH3T3 cells. Expressions of mEndo, msFlk-1, and msTie2 were confirmed by reverse transcription PCR. The 3-(4,5-Dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to estimate the effect of mEndo, msFlk-1, or msTie2 on the proliferation of human umbilical vein endothelial cells, and the scarification test was used to measure the migration of the cells. Seventy C57Bl/6 mice were subjected to the induction of chemical-burn corneal NV and tested for efficacy of gene therapy. Gene therapy was performed by subconjunctival injection of viral preparations and its effect was evaluated by scoring corneal NV.
The recombinant virus-producing cell lines expressing mEndo, msFlk-1, and msTie2 were constructed successfully. Overexpression of these putative anti-angiogenic proteins inhibited the proliferation and migration of human umbilical vein endothelial cells in vitro. In the murine corneal NV model, subconjunctival injection of the retroviral particles of mEndo and msFlk-1 showed the most significant inhibition of corneal NV.
Gene therapy with the recombinant retroviral vector-hosted mEndo and msFlk-1 gene effectively inhibited corneal NV induced by alkaline burn. The combination of multiple anti-angiogenic genes might be necessary for effective therapy of corneal NV, although each of these pathways makes a potential target for the treatment of this disease.
PMCID: PMC2830023  PMID: 20208988
19.  Expression of transcription factors and crystallin proteins during rat lens regeneration 
Molecular Vision  2010;16:341-352.
To establish a model of lens regeneration in rats and to detect the expression of transcription factor and crystallin genes.
An extracapsular lens extraction (ECLE) was performed in Sprague-Dawley rats. Examinations with slit-lamp and histological analysis were performed at various time points after ECLE. Real-time PCR and/or immunofluorescence were performed to detect the expression of the lens transcription factors paired box 6 (Pax6), prospero homeobox 1 (Prox1), and forkhead box E3 (Foxe3) and α-, β-, and γ-crystallin (Cryaa, Cryab, Crybb1, Crybb2, Cryba2, and Crygd, respectively).
Lens epithelial cells (LECs) were left behind under the anterior capsule immediately after ECLE. Lens fiber differentiation had occurred in the peripheral capsular bag in all rats 3 days after ECLE. One month after surgery, all capsular bags were filled with new semitransparent lenticular structures displaying an established equator with well differentiated bow regions. The mRNA-expression quantity of lens transcription factors and α-, β-, and γ- crystallin increased after ECLE. Pax6 was expressed in both LECs and the newly regenerated lens fiber cells, Prox1 was expressed both in LECs and differentiating lens fiber cells, and Foxe3 was confined to LECs.
Lens fiber differentiation during regeneration follows a process similar to embryological development, with proliferation of epithelial cells along the anterior and posterior capsule, elongation of the posterior epithelial cells, and differentiation of epithelial cells into lens fibers. The regenerated lens contains proteins and transcription factors similar to those found in normal lenses. Inductive interactions seen during lens development are not necessary for lens regeneration.
PMCID: PMC2834568  PMID: 20216939
20.  Molecular evidence of senescence in corneal endothelial cells of senescence-accelerated mice 
Molecular Vision  2009;15:747-761.
To investigate senescent evidence in corneal endothelial cells (CECs) of the senescence-accelerated mouse (SAM), which is considered a suitable animal model for the further study of the senescent mechanism in CECs.
Thirty-six male mice from a senescence resistant mouse strain (SAM R1) and a senescence-prone strain (SAM P8) at various ages (1, 6, and 12 months) were analyzed in this study. The endothelial cell density (ECD) and cell viability were detected using trypan blue and alizarin red dyes while the senescent cells were observed by senescence-associated β-galactosidase (SA-β-Gal; pH 6.0) staining. In addition, ultrastructure was observed using an electron microscope. The senescence-related genes (p16INK4a, p19ARF, p21WAF1/CIP1, and p53) in the CECs were visualized via immunohistochemistry and were quantitatively detected using real-time polymerase chain reaction (PCR). Signal proteins of phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2) were detected by western blot analysis.
Our results indicated that the ECD values decreased with increasing age in both the SAM-R1 and SAM P8 series where the values in the older SAM p8 series decreased even lower than in the older SAM R1 series. The mean decreased rate was 2.276% per month in the SAM R1 and 2.755% per month in the SAM P8 series. In addition, changes in the senescence-like ultrastructure were observed in the CECs of both strains, and the increase in the positive staining of SA-β-Gal was observed in both strains as well. It is worth noting that such changes were more significant in the SAM P8 strain. Immunohistochemical detection assays indicated the expression of p-ERK 1/2, p16INK4a, p19ARF, p21WAF1/CIP1, and p53 (nuclear localization for each) in each age group analyzed. Furthermore, the results of real-time PCR studies showed an increase in the expression of p16INK4a mRNA as a function of age in the SAM R1 strain and in the early senescence stage of the SAM P8 strain in addition to an increase in the expression of p21WAF1/CIP1 and p53 mRNA as a function of age in the SAM P8 strain (no significant increase was observed in the SAM R1 strain). Additional results from western blot analysis demonstrated an age-related increase in the quantity of the p-ERK 1/2 proteins in both strains.
The SAM R1 and SAM P8 strains represent suitable models for the study of CEC senescence in vivo. In addition, the progression of cellular senescence in CECs occurs more quickly in the SAM P8 strain as opposed to the SAM R1 strain. Our results also indicate that the p16INK4a signaling pathway may play a key role in the early stages of senescence in CECs while the p53/p21WAF1/CIP1 signaling pathway may exert its principle effect in the late stages of senescence in CECs. Further study is still required about the role of the mitogen-activated protein kinase (MAPK) signaling cascade in the process of senescence in CECs.
PMCID: PMC2669445  PMID: 19381346
21.  Clinical and genetic features of a dominantly-inherited microphthalmia pedigree from China 
Molecular Vision  2009;15:949-954.
To evaluate the clinical, histopathologic, and genetic characteristics of a microphthalmia pedigree.
A five-generation Chinese family with microphthalmia was recruited. Clinical and histological examinations were performed in the affected patients and their family members. Cyrillic software was used to map the pedigree. Genomic DNA was extracted from peripheral blood, and linkage analysis was performed using short tandem repeat polymorphism markers. Two-point LOD scores were calculated using the MLINK program.
Microphthalmia was inherited in an autosomal dominant manner in this family. All nine affected members had hyperopia (mean: +8.00 diopters) and physiologically reduced axis oculi (mean: 19.29 mm) with a visual acuity of less than 0.5. Refractory angle-closure glaucoma occurred in three of them and atrophia bulbi in two. Histological examination showed diffuse degenerated collagen fibers in the scleral stroma. Two-point LOD score linkage analysis excluded all known genetic loci associated with simple microphthalmia in all patients.
Simple microphthalmia was dominantly inherited in this Chinese pedigree with typical phenotypes, which resulted in severe visual deterioration by middle age. A novel locus is predicted to be responsible for the microphthalmia in this family, which may prove a high genetic heterogeneity in microphthalmia.
PMCID: PMC2683027  PMID: 19452014
22.  Expression and potential role of major inflammatory cytokines in experimental keratomycosis 
Molecular Vision  2009;15:1303-1311.
The aim of this study was to investigate the expression and regulation of the four major inflammatory cytokines in fungal keratitis (FK) with the goal of further understanding its pathogenesis in order to develop more effective therapeutic approaches.
Aspergillus fumigatus and Candida albicans were the corneal pathogens selected for this study to establish murine FK using epikeratophakia with the aid of corneal epithelium erasion. One, three, five, and seven days post-infection, the corneal lesions and inflammatory responses were observed by slit-lamp and histopathology, and the expressions of the four inflammatory cytokines, macrophage inflammatory protein-2 (MIP-2), cytokine-induced neutrophil chemoattractant (KC), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in the infected corneas were determined using reverse transcription polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA). For the intervention experiment with neutralizing antibodies, the experimental mice were then injected subconjunctivally with 5 μl (2 ng/μl) MIP-2 or IL-1β polyclonal antibody 1 h before and 24 h after surgery. Reestablishment of the FK murine model was performed following injection. Effects of MIP-2 or IL-1β polyclonal antibody on the corneal diseases were observed by slit-lamp microscopy, histopathology, and ELISA.
Expression of MIP-2, KC, IL-1β, and IL-6 was upregulated significantly in the infected group one, three, five, and seven days after surgery. Following treatment with an MIP-2 polyclonal antibody, the corneal clinical scores and inflammatory responses decreased, the MIP-2 protein levels were downregulated significantly (p<0.01), and the KC protein levels decreased slightly (p>0.05). Upon administration of IL-1β polyclonal antibodies, the decrease in clinical scores, inflammatory responses, and protein levels of MIP-2 and KC was apparent at 1 and 3 days after infection (p<0.01).
A persistent, high level expression of MIP-2 and IL-1β is an important and even major factor in the corneal pathogenesis of FK. Specific polyclonal neutralizing antibodies may be administered to inhibit the major chemokines and cytokines responsible for corneal damage thus effectively relieving the injury caused by FK.
PMCID: PMC2707360  PMID: 19590756
23.  Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization 
Molecular Vision  2009;15:1951-1961.
To assess the effects of polysaccharide extract from Spirulina platensis (PSP) on corneal neovascularization (CNV) in vivo and in vitro.
PSP was extracted from dry powder of Spirulina platensis. Its anti-angiogenic activity was evaluated in the mouse corneal alkali burn model after topical administration of PSP four times daily for up to seven days. Corneal samples were processed for histochemical, immunohistochemical, and gene expression analyses. The effects of PSP on proliferation, migration, tube formation, and serine threonine kinase (AKT) and extracellular regulated kinase1/2 (ERK1/2) signaling levels in vascular endothelial cells were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) and carboxyfluorescein succinimidyl ester (CFSE) labeling assays, wound healing assay, Matrigel tube formation assay, and western blot.
Topical application of PSP significantly inhibited CNV caused by alkali burn. Corneas treated with PSP showed reduced levels of platelet endothelial cell adhesion molecule (CD31) and stromal cell-derived factor 1 (SDF1) proteins, reduced levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), SDF1, and tumor necrosis factor-alpha (TNF-α) mRNAs, and an increased level of pigment epithelium-derived factor (PEDF) mRNA. These are parameters that have all been related to CNV and/or inflammation. In human vascular endothelial cells, PSP significantly inhibited proliferation, migration, and tube formation in a dose-dependent manner. Furthermore, PSP also decreased the levels of activated AKT and ERK 1/2.
These data suggest that polysaccharide extract from Spirulina platensis is a potent inhibitor of CNV and that it may be of benefit in the therapy of corneal diseases involving neovascularization and inflammation.
PMCID: PMC2751803  PMID: 19784394
24.  Expression of senescence-related genes in human corneal endothelial cells 
Molecular Vision  2008;14:161-170.
To investigate the expression of p16INK4a, p21WAF1/CIP1, p27KIP1, and p53 in human corneal endothelial cell (HCEC) senescence ex vivo at various donor ages.
Residual corneal tissues obtained after penetrating keratoplasty were used in this study. Age, death-to-preservation interval, and preservation-to-surgery interval of the donors were recorded. Corneal endothelial cell survival and density were evaluated by trypan blue and alizarin red staining immediately after keratoplasty. Fresh frozen sections of donor corneas at various ages (18, 33, 54, and 68 years) were immunostained in situ. Total RNA extracted from age groups of 20, 30, 40, 50, and 60 years was evaluated by reverse-transcriptase polymerase chain reaction (PCR) to reveal the expression of the senescence-related genes, p16INK4a, p21WAF1/CIP1, p27KIP1, and p53, in HCECs. Total RNA extracted from 20-, 24-, 26-, 30-, 50-, 55-, 56-, and 60-year-old donor groups was subjected to real-time PCR analysis for measurement of gene expression. The results of the young (≤30 years) and the old (≥ 50 years) were compared by the unpaired t-test. Ex vivo senescence of HCECs from the donors at various ages (9, 17, 23, 57, 65, and 67 years) was observed by senescence-associated β-galactosidase activity (SA-β-Gal) staining at pH 6.0.
The mean endothelial cell density of the donor corneas was 2,391.4±84.6 cells/mm2, and the survival rate of the endothelial cells was 84.4%±5.3%. Hematoxylin and eosin staining showed normal structures of the corneal epithelium, stroma, and endothelium. The expression and nuclear localization of p16INK4a, p21WAF1/CIP1, p27KIP1, and p53 in HCECs were confirmed by immunohistochemistry in situ. Reverse transcriptase PCR examination showed positive target bands of each gene at each age group. An age-related increase in p16INK4a expression was observed by real-time PCR (p=0.014). There was no significant difference in the expression levels of p21WAF1/CIP1, p27KIP1, and p53 between the young and old donors (p=0.875, 0.472, and 0.430, respectively). Strong SA-β-Gal activity was observed in the endothelial cells of the old donors while there was weak and little-to-no blue staining in the endothelia from the young.
The population of HCECs exhibiting senescence-like characteristics increases with age. p16INK4a, p21WAF1/CIP1, p27KIP1, and p53 are expressed in HCECs despite donor ages. The p16INK4a signal pathway might play a key role in the process of senescence in HCECs.
PMCID: PMC2254959  PMID: 18334933
25.  Histone deacetylase inhibitors blocked activation and caused senescence of corneal stromal cells 
Molecular Vision  2008;14:2556-2565.
Corneal myofibroblasts differentiated from activated corneal stromal cells are the major cellular sources of extracellular matrix synthesis for the repair of corneal injury. In this study, the effects of histone deacetylase (HDAC) inhibitors on the activation, proliferation, migration and senescence of corneal stromal cells were evaluated.
Primary human and mouse corneal stromal cells were harvested by sequential digestion with dispase and collagenase, and cultured in DMEM/F-12 media under serum-free (keratocytes), serum- (corneal fibroblasts) and TGFβ1-supplemented (corneal myofibroblasts) conditions. The responses of corneal stromal cells to HDAC inhibitors were characterized by cDNA microarray, real time PCR, immunocytochemistry and western blot analysis. The effects of HDAC inhibitors on corneal fibroblast proliferation, cell cycle distribution, migration and senescence were also assessed in vitro.
Fetal bovine serum and TGFβ1 activated the transdifferentiation of corneal stromal cells into fibroblasts and myofibroblasts, indicated by cell spreading, renewed assembly of actin filaments and enhanced expression of extracellular matrix components, all of which were suppressed by the addition of HDAC inhibitors. HDAC inhibitors inhibited the proliferation of corneal fibroblasts by decreasing the proportion in the S-phase and increasing the proportion in the G0/G1 and G2/M cell cycle checkpoints. HDAC inhibitors showed a dose-dependent inhibitory effects on the migration of corneal fibroblasts. In addition, HDAC inhibitors induced the senescence of corneal myofibroblasts as shown by enhanced staining of β-galactosidase and upregulated expression of p16ink4a.
HDAC inhibitors may affect corneal stromal cells by inhibiting myofibroblastic differentiation, cell proliferation, migration and by inducing cell senescence. Thus, this has implications for future studies in the development of promising drugs in the prevention or treatment of corneal haze and scar formation.
PMCID: PMC2613076  PMID: 19122829

Results 1-25 (27)