PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Galectin-12 
Adipocyte  2012;1(2):96-100.
Galectin-12, a member of the galectin family of animal lectins, is preferentially expressed in adipocytes. We recently reported that this galectin is localized on lipid droplets, specialized organelles for fat storage. Galectin-12 regulates lipid degradation (lipolysis) by modulating lipolytic protein kinase A (PKA) signaling. Mice deficient in galectin-12 exhibit enhanced adipocyte lipolysis, increased mitochondria respiration, reduced adiposity and ameliorated insulin resistance associated with weight gain. The results suggest that galectin-12 may be a useful target for treatment of obesity-related metabolic conditions, such as insulin resistance, metabolic syndrome, and type 2 diabetes. Most previously described galectins largely reside in the cytosol, although they can also be induced to become associated with membrane-containing structures. Along with an in-depth characterization of galectin-12, this mini-review comments on this first report of a galectin normally localized specifically in an organelle that performs an important intracellular function. Further studies will help shed light on how this protein regulates cellular homeostasis, especially energy homeostasis, and provide additional insight into the intracellular functions of galectins.
doi:10.4161/adip.19465
PMCID: PMC3609087  PMID: 23700518
adipocyte; adipose tissue; galectin; galectin-12; insulin sensitivity; lipid metabolism; lipolysis
2.  Galectin-3 regulates intracellular trafficking of epidermal growth factor receptor through Alix and promotes keratinocyte migration 
The epidermal growth factor receptor (EGFR)-mediated signaling pathways are important in a variety of cellular processes, including cell migration and wound re-epithelialization. Intracellular trafficking of EGFR is critical for maintaining EGFR surface expression. Galectin-3, a member of an animal lectin family, has been implicated in a number of physiological and pathological processes. Through studies of galectin-3-deficient mice and cells isolated from these mice, we demonstrated that absence of galectin-3 impairs keratinocyte migration and skin wound re-epithelialization. We have linked this pro-migratory function to a crucial role of cytosolic galectin-3 in controlling intracellular trafficking and cell surface expression of EGFR after EGF stimulation. Without galectin-3, the surface levels of EGFR are dramatically reduced and the receptor accumulates diffusely in the cytoplasm. This is associated with reduced rates of both endocytosis and recycling of the receptor. We have provided evidence that this novel function of galectin-3 may be mediated through interaction with its binding partner Alix, which is a protein component of the endosomal sorting complex required for transport (ESCRT) machinery. Our results suggest that galectin-3 is potentially a critical regulator of a number of important cellular responses through its intracellular control of trafficking of cell surface receptors.
doi:10.1038/jid.2012.211
PMCID: PMC3496033  PMID: 22785133
3.  Galectin-1 induces nuclear translocation of Endonuclease G in caspase- and cytochrome c-independent T cell death1 
Cell death and differentiation  2004;11(12):1277-1286.
Galectin-1, a mammalian lectin expressed in many tissues, induces death of diverse cell types, including lymphocytes and tumor cells. The galectin-1 T cell death pathway is novel and distinct from other death pathways, including those initiated by Fas and corticosteroids. We have found that galectin-1 binding to human T cell lines triggered rapid translocation of endonuclease G from mitochondria to nuclei. However, endonuclease G nuclear translocation occurred without cytochrome c release from mitochondria, without nuclear translocation of apoptosis inducing factor, and prior to loss of mitochondrial membrane potential. Galectin-1 treatment did not result in caspase activation, nor was death blocked by caspase inhibitors. However, galectin-1 cell death was inhibited by intracellular expression of galectin-3, and galectin-3 expression inhibited the eventual loss of mitochondrial membrane potential. Galectin-1 induced cell death proceeds via a caspase-independent pathway that involves a unique pattern of mitochondrial events, and different galectin family members can coordinately regulate susceptibility to cell death.
doi:10.1038/sj.cdd.4401485
PMCID: PMC1201488  PMID: 15297883
galectin; apoptosis; T lymphocyte; Endonuclease G; human; phosphatidylserine (PS); z-Val-Ala-Asp(OMe)-CH2F (zVAD-fmk); z-Asp-Glu-Val-Asp(OMe)-CH2F (zDEVD-fmk); poly(ADP-ribose)polymerase (PARP); 7-amino-actinomycin D (7AAD); z-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin (zDEVD-AFC); mitochondrial membrane potential (Δψm); endonuclease G (EndoG); 10-N-nonyl acridine orange (NAO); Apoptosis inducing factor (AIF); truncated Bid (tBid); propidium iodide (PI); fluorescein isothiocyanate (FITC)

Results 1-3 (3)