Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Thrombin drives tumorigenesis in colitis-associated colon cancer 
Cancer research  2014;74(11):3020-3030.
The established association between inflammatory bowel disease and colorectal cancer underscores the importance of inflammation in colon cancer development. Based on evidence that hemostatic proteases are powerful modifiers of both inflammatory pathologies and tumor biology, gene-targeted mice carrying low levels of prothrombin were used to directly test the hypothesis that prothrombin contributes to tumor development in colitis-associated colon cancer (CAC). Remarkably, imposing a modest 50% reduction in circulating prothrombin in fII+/− mice, a level that carries no significant bleeding risk, dramatically decreased adenoma formation following an azoxymethane/dextran sodium sulfate challenge. Similar results were obtained with pharmacological inhibition of prothrombin expression or inhibition of thrombin proteolytic activity. Detailed longitudinal analyses showed that the role of thrombin in tumor development in CAC was temporally associated with the antecedent inflammatory colitis. However, direct studies of the antecedent colitis showed that mice carrying half-normal prothrombin levels were comparable to control mice in mucosal damage, inflammatory cell infiltration and associated local cytokine levels. These results suggest that thrombin supports early events coupled to inflammation-mediated tumorigenesis in CAC that are distinct from overall inflammation-induced tissue damage and inflammatory cell trafficking. That prothrombin is linked to early events in CAC was strongly inferred by the observation that prothrombin deficiency dramatically reduced the formation of very early, pre-cancerous aberrant crypt foci. Given the importance of inflammation in the development of colon cancer, these studies suggest that therapeutic interventions at the level of hemostatic factors may be an effective means to prevent and/or impede colitis-associated colon cancer progression.
PMCID: PMC4288815  PMID: 24710407
2.  Tissue-specific effects of saposin A and saposin B on glycosphingolipid degradation in mutant mice 
Human Molecular Genetics  2013;22(12):2435-2450.
Individual saposin A (A−/−) and saposin B (B−/−)-deficient mice show unique phenotypes caused by insufficient degradation of myelin-related glycosphingolipids (GSLs): galactosylceramide and galactosylsphingosine and sulfatide, respectively. To gain insight into the interrelated functions of saposins A and B, combined saposin AB-deficient mice (AB−/−) were created by knock-in point mutations into the saposins A and B domains on the prosaposin locus. Saposin A and B proteins were undetectable in AB−/− mice, whereas prosaposin, saposin C and saposin D were expressed near wild-type (WT) levels. AB−/− mice developed neuromotor deterioration at >61 days and exhibited abnormal locomotor activity and enhanced tremor. AB−/− mice (∼96 days) lived longer than A−/− mice (∼85 days), but shorter than B−/− mice (∼644 days). Storage materials were observed in Schwann cells and neuronal processes by electron microscopy. Accumulation of p62 and increased levels of LC3-II were detected in the brainstem suggesting altered autophagy. GSL analyses by (liquid chromatography) LC/MS identified substantial increases in lactosylceramide in AB−/− mouse livers. Sulfatide accumulated, but galactosylceramide remained at WT levels, in the AB−/− mouse brains and kidneys. Brain galactosylsphingosine in AB−/− mice was ∼68% of that in A−/− mice. These findings indicate that combined saposins A and B deficiencies attenuated GalCer-β-galactosylceramidase and GM1-β-galactosidase functions in the degradation of lactosylceramide preferentially in the liver. Blocking sulfatide degradation from the saposin B deficiency diminished galactosylceramide accumulation in the brain and kidney and galctosylsphingosine in the brain. These analyses of AB−/− mice continue to delineate the tissue differential interactions of saposins in GSL metabolism.
PMCID: PMC3708521  PMID: 23446636
3.  The Fanconi Anemia Pathway Limits Human Papillomavirus Replication 
Journal of Virology  2012;86(15):8131-8138.
High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.
PMCID: PMC3421690  PMID: 22623785
4.  Impact of perinatal exposure to equol enantiomers on reproductive development in rodents 
There is now considerable interest in the intestinally derived soy isoflavone metabolite, equol, which occurs in the enantiomeric forms, S-(−)equol and R-(+)equol, both differing in biological actions. Little is known about effects of either enantiomer on reproductive development, yet such knowledge is fundamental because of the recent commercialization of S-(−)equol as a dietary supplement. S-(−)equol and R-(+)equol were therefore investigated to determine their effects on reproductive development and fertility in the Sprague–Dawley rat. Neither enantiomer affected fertility, number of litters produced, number of pups per litter, number of male and female pups born, birth weight, anogenital distance, testicular descent or vaginal opening. Histological analysis showed no major abnormalities in ovary, testis, prostate or seminal vesicle tissue with dietary exposure to S-(−)equol or R-(+)equol, but both enantiomers triggered hyperplasia of uterine tissue. With R-(+)equol this stimulatory effect subsided after exposure was discontinued, but the effect of S-(−)equol was prolonged.
PMCID: PMC3181124  PMID: 21620954
Equol; Enantiomer; Rodent model; Reproduction; Toxicology
5.  The chemopreventive action of equol enantiomers in a chemically induced animal model of breast cancer 
Carcinogenesis  2010;31(5):886-893.
We describe for the first time the chemopreventive effects of S-(−)equol and R-(+)equol, diastereoisomers with contrasting affinities for estrogen receptors (ERs). S-(−)equol, a ligand for ERβ, is an intestinally derived metabolite formed by many humans and by rodents consuming diets containing soy isoflavones. Whether the well-documented chemopreventive effect of a soy diet could be explained by equol's action was unclear because neither diastereoisomers had been tested in animal models of chemoprevention. Sprague–Dawley rats (n = 40–41 per group) were fed a soy-free AIN-93G diet or an AIN-93G diet supplemented with 250 mg/kg of S-(−)equol or R-(+)equol beginning day 35. On day 50, mammary tumors were induced by dimethylbenz[a]anthracene and thereafter, animals were palpated for number and location of tumors. On day 190, animals were killed and mammary tumors were removed and verified by histology, and the degree of invasiveness and differentiation was determined. S-(−)equol and R-(+)equol plasma concentrations measured on days 35, 100 and 190 by tandem mass spectrometry confirmed diet compliance and no biotransformation of either diastereoisomer. In this model, S-(−)equol had no chemopreventive action, nor was it stimulatory. In contrast, R-(+)equol compared with Controls reduced palpable tumors (P = 0.002), resulted in 43% fewer tumors (P = 0.004), increased tumor latency (88.5 versus 66 days, P = 0.003), and tumors were less invasive but showed no difference in pattern grade or mitosis. Both enantiomers had no effect on absolute uterine weight but caused a significant reduction in body weight gain. In conclusion, the novel finding that the unnatural enantiomer, R-(+)equol, was potently chemopreventive warrants investigation of its potential for breast cancer prevention and treatment.
PMCID: PMC2864409  PMID: 20110282
6.  Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits 
Human Molecular Genetics  2010;19(6):1088-1097.
Gaucher disease is caused by defective acid β-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C−/−) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities ∼30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred ∼48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C−/− alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.
PMCID: PMC2830832  PMID: 20047948
7.  Specific saposin C deficiency: CNS impairment and acid β-glucosidase effects in the mouse 
Human Molecular Genetics  2009;19(4):634-647.
Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid β-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C−/−) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene. In C−/− mice, prosaposin and saposins A, B and D proteins were present at near wild-type levels, but the saposin C protein was absent. By 1 year, the C−/− mice exhibited weakness of the hind limbs and progressive ataxia. Decreased neuromotor activity and impaired hippocampal long-term potentiation were evident. Foamy storage cells were observed in dorsal root ganglion and there was progressive loss of cerebellar Purkinje cells and atrophy of cerebellar granule cells. Ultrastructural analyses revealed inclusions in axonal processes in the spinal cord, sciatic nerve and brain, but no excess of multivesicular bodies. Activated microglial cells and astrocytes were present in thalamus, brain stem, cerebellum and spinal cord, indicating regional pro-inflammatory responses. No storage cells were found in visceral organs of these mice. The absence of saposin C led to moderate increases in GC and lactosylceramide (LacCer) and their deacylated analogues. These results support the view that saposin C has multiple roles in glycosphingolipid (GSL) catabolism as well as a prominent function in CNS and axonal integrity independent of its role as an optimizer/stabilizer of GCase.
PMCID: PMC2807372  PMID: 20015957
8.  Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice 
BMC Neuroscience  2008;9:76.
Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies.
Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/-) and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA). Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD) was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport.
These results show that: 1) Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2) Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3) CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.
PMCID: PMC2518924  PMID: 18673548
9.  Neurological deficits and glycosphingolipid accumulation in saposin B deficient mice 
Human Molecular Genetics  2008;17(15):2345-2356.
Saposin B derives from the multi-functional precursor, prosaposin, and functions as an activity enhancer for several glycosphingolipid (GSL) hydrolases. Mutations in saposin B present in humans with phenotypes resembling metachromatic leukodystrophy. To gain insight into saposin B's physiological functions, a specific deficiency was created in mice by a knock-in mutation of an essential cysteine in exon 7 of the prosaposin locus. No saposin B protein was detected in the homozygotes (B−/−) mice, whereas prosaposin, and saposins A, C and D were at normal levels. B−/− mice exhibited slowly progressive neuromotor deterioration and minor head tremor by 15 months. Excess hydroxy and non-hydroxy fatty acid sulfatide levels were present in brain and kidney. Alcian blue positive (sulfatide) storage cells were found in the brain, spinal cord and kidney. Ultrastructural analyses showed lamellar inclusion material in the kidney, sciatic nerve, brain and spinal cord tissues. Lactosylceramide (LacCer) and globotriaosylceramide (TriCer) were increased in various tissues of B−/− mice supporting the in vivo role of saposin B in the degradation of these lipids. CD68 positive microglial cells and activated GFAP positive astrocytes showed a proinflammatory response in the brains of B−/− mice. These findings delineate the roles of saposin B for the in vivo degradation of several GSLs and its primary function in maintenance of CNS function. B−/− provide a useful model for understanding the contributions of this saposin to GSL metabolism and homeostasis.
PMCID: PMC2465797  PMID: 18480170
10.  Differential Contribution of IL-4 and STAT6 vs STAT4 to the Development of Lupus Nephritis1 
Mechanisms that initiate lupus nephritis and cause progression to end-stage renal disease remain poorly understood. In this study, we show that lupus-prone New Zealand Mixed 2410 mice that develop a severe glomerulosclerosis and rapidly progressive renal disease overexpress IL-4 in vivo. In these mice, STAT6 deficiency or anti-IL-4 Ab treatment decreases type 2 cytokine responses and ameliorates kidney disease, particularly glomerulosclerosis, despite the presence of high levels of IgG anti-dsDNA Abs. STAT4 deficiency, however, decreases type 1 and increases type 2 cytokine responses, and accelerates nephritis, in the absence of high levels of IgG anti-dsDNA Abs. Thus, STAT6 and IL-4 may selectively contribute to the development of glomerulosclerosis, whereas STAT4 may play a role in autoantibody production.
PMCID: PMC2291553  PMID: 12707364
11.  An ACE inhibitor reduces Th2 cytokines and TGF-β1 and TGF-β2 isoforms in murine lupus nephritis 
Kidney international  2004;65(3):846-859.
Angiotensin-converting enzyme (ACE) inhibitors, such as captopril, are used to control hypertension. In patients and animals with primary nephropathies, these agents improve renal function more than that would be expected from their control of hypertension. Here, we examine the effects of treatment with captopril on lupus nephritis and discuss the potential mechanism(s) by which this agent exerts its renoprotective effects.
Lupus-prone, NZB/NZW F1 and MRL-lpr/lpr, mice were treated with captopril or with a control antihypertensive agent, verapamil. Mice were monitored for nephritis, and their sera and tissues analyzed for cytokine and transforming growth factor-β (TGF-β) expression.
Captopril treatment delayed the onset of proteinuria when administered to prenephritic mice, whereas verapamil did not. Captopril treatment also retarded disease progression when given to lupus mice that had early disease, and even reversed severe proteinuria in at least some older animals with advanced disease. It reduced chronic renal lesions, but had no effect on autoantibody production. The improvement in renal disease correlated with reduced TGF-β expression, particularly of the TGF-β1 and TGF-β2 isoforms, in the kidneys. Interestingly, in vivo or in vitro exposure to captopril reduced splenic levels of type 2 cytokines, interleukin (IL)-4 and IL-10, suggesting a possible role of the immune system in captopril-mediated disease modulation.
Since type 2 cytokines are known to promote lupus glomerulosclerosis, decreased IL-4 and IL-10 production in captopril-treated mice may be related to this agent’s renoprotective effects. We argue here that ACE inhibitors not only act as selective TGF-β inhibitors, but also as selective immunomodulators, to improve lupus nephritis.
PMCID: PMC2291513  PMID: 14871404
animal models; autoantibodies; cytokines; lupus nephritis; systemic lupus erythematosus; transforming growth factor β
12.  Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice 
Nature  1997;389(6654):963-966.
The development of characteristic visceral asymmetries along the left–right (LR) axis in an initially bilaterally symmetrical embryo is an essential feature of vertebrate patterning. The allelic mouse mutations inversus viscerum (iv)1,2 and legless (lgl)3,4 produce LR inversion, or situs inversus, in half of live-born homozygotes. This suggests that the iv gene product drives correct LR determination, and in its absence this process is randomized2. These mutations provide tools for studying the development of LR-handed asymmetry and provide mouse models of human lateralization defects. At the molecular level, the normally LR asymmetric expression patterns of nodal5 and lefty6 are randomized in iv/iv embryos, suggesting that iv functions early in the genetic hierarchy of LR specification. Here we report the positional cloning of an axonemal dynein heavy-chain gene, left/right-dynein (lrd), that is mutated in both lgl and iv. lrd is expressed in the node of the embryo at embryonic day 7.5, consistent with its having a role in LR development7. Our findings indicate that dynein, a micro-tubule-based motor, is involved in the determination of LR-handed asymmetry and provide insight into the early molecular mechanisms of this process.
PMCID: PMC1800588  PMID: 9353118
13.  Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries 
Development (Cambridge, England)  1999;126(23):5495-5504.
Vertebrates develop distinct asymmetries along the left-right axis, which are consistently aligned with the anteroposterior and dorsoventral axes. The mechanisms that direct this handed development of left-right asymmetries have been elusive, but recent studies of mutations that affect left-right development have shed light on the molecules involved. One molecule implicated in left-right specification is left-right dynein (LRD), a microtubule-based motor protein. In the LRD protein of the inversus viscerum (iv) mouse, there is a single amino acid difference at a conserved position, and the lrd gene is one of many genes deleted in the legless (lgl) mutation. Both iv and lgl mice display randomized left-right development. Here we extend the analysis of the lrd gene at the levels of sequence, expression and function. The complete coding sequence of the lrd gene confirms its classification as an axonemal, or ciliary, dynein. Expression of lrd in the node at embryonic day 7.5 is shown to be symmetric. At embryonic day 8.0, however, a striking asymmetric expression pattern is observed in all three germ layers of the developing headfold, suggesting roles in both the establishment and maintenance of left-right asymmetries. At later times, expression of lrd is also observed in the developing floorplate, gut and limbs. These results suggest function for LRD protein in both cilitated and non-ciliated cells, despite its sequence classification as axonemal. In addition, a targeted mutation of lrd was generated that deletes the part of the protein required for ATP binding, and hence motor function. The resulting left-right phenotype, randomization of laterality, is identical to that of iv and lgl mutants. Gross defects in ciliary structure were not observed in lrd/lrd mutants. Strikingly, however, the monocilia on mutant embryonic node cells were immotile. These results prove the identity of the iv and lrd genes. Further, they argue that LRD motor function, and resulting nodal monocilia movement, are required for normal left-right development.
PMCID: PMC1797880  PMID: 10556073
Left-right asymmetry; Situs inversus; Dynein; ATP; Mouse
14.  Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin αMβ2 binding motif  
The Journal of Clinical Investigation  2007;117(11):3224-3235.
Fibrin deposition within joints is a prominent feature of arthritis, but the precise contribution of fibrin(ogen) to inflammatory events that cause debilitating joint damage remains unknown. To determine the importance of fibrin(ogen) in arthritis, gene-targeted mice either deficient in fibrinogen (Fib–) or expressing mutant forms of fibrinogen, lacking the leukocyte receptor integrin αMβ2 binding motif (Fibγ390–396A) or the αIIbβ3 platelet integrin-binding motif (FibγΔ5), were challenged with collagen-induced arthritis (CIA). Fib– mice exhibited fewer affected joints and reduced disease severity relative to controls. Similarly, diminished arthritis was observed in Fibγ390–396A mice, which retain full clotting function. In contrast, arthritis in FibγΔ5 mice was indistinguishable from that of controls. Fibrin(ogen) was not essential for leukocyte trafficking to joints, but appeared to be involved in leukocyte activation events. Fib– and Fibγ390–396A mice with CIA displayed reduced local expression of TNF-α, IL-1β, and IL-6, which suggests that αMβ2-mediated leukocyte engagement of fibrin is mechanistically upstream of the production of proinflammatory mediators. Supporting this hypothesis, arthritic disease driven by exuberant TNF-α expression was not impeded by fibrinogen deficiency. Thus, fibrin(ogen) is an important, but context-dependent, determinant of arthritis, and one mechanism linking fibrin(ogen) to joint disease is coupled to αMβ2-mediated inflammatory processes.
PMCID: PMC2000806  PMID: 17932565
15.  Leukocyte engagement of fibrin(ogen) via the integrin receptor αMβ2/Mac-1 is critical for host inflammatory response in vivo  
Journal of Clinical Investigation  2004;113(11):1596-1606.
The leukocyte integrin αMβ2/Mac-1 appears to support the inflammatory response through multiple ligands, but local engagement of fibrin(ogen) may be particularly important for leukocyte function. To define the biological significance of fibrin(ogen)-αMβ2 interaction in vivo, gene-targeted mice were generated in which the αMβ2-binding motif within the fibrinogen γ chain (N390RLSIGE396) was converted to a series of alanine residues. Mice carrying the Fibγ390–396A allele maintained normal levels of fibrinogen, retained normal clotting function, supported platelet aggregation, and never developed spontaneous hemorrhagic events. However, the mutant fibrinogen failed to support αMβ2-mediated adhesion of primary neutrophils, macrophages, and αMβ2-expressing cell lines. The elimination of the αMβ2-binding motif on fibrin(ogen) severely compromised the inflammatory response in vivo as evidenced by a dramatic impediment in leukocyte clearance of Staphylococcus aureus inoculated into the peritoneal cavity. This defect in bacterial clearance was due not to diminished leukocyte trafficking but rather to a failure to fully implement antimicrobial functions. These studies definitively demonstrate that fibrin(ogen) is a physiologically relevant ligand for αMβ2, integrin engagement of fibrin(ogen) is critical to leukocyte function and innate immunity in vivo, and the biological importance of fibrinogen in regulating the inflammatory response can be appreciated outside of any alteration in clotting function.
PMCID: PMC419487  PMID: 15173886
16.  Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis 
Journal of Clinical Investigation  2003;111(12):1863-1874.
Asthma is on the rise despite intense, ongoing research underscoring the need for new scientific inquiry. In an effort to provide unbiased insight into disease pathogenesis, we took an approach involving expression profiling of lung tissue from mice with experimental asthma. Employing asthma models induced by different allergens and protocols, we identified 6.5% of the tested genome whose expression was altered in an asthmatic lung. Notably, two phenotypically similar models of experimental asthma were shown to have distinct transcript profiles. Genes related to metabolism of basic amino acids, specifically the cationic amino acid transporter 2, arginase I, and arginase II, were particularly prominent among the asthma signature genes. In situ hybridization demonstrated marked staining of arginase I, predominantly in submucosal inflammatory lesions. Arginase activity was increased in allergen-challenged lungs, as demonstrated by increased enzyme activity, and increased levels of putrescine, a downstream product. Lung arginase activity and mRNA expression were strongly induced by IL-4 and IL-13, and were differentially dependent on signal transducer and activator of transcription 6. Analysis of patients with asthma supported the importance of this pathway in human disease. Based on the ability of arginase to regulate generation of NO, polyamines, and collagen, these results provide a basis for pharmacologically targeting arginine metabolism in allergic disorders.
PMCID: PMC161427  PMID: 12813022
17.  Apolipoprotein J/Clusterin Prevents a Progressive Glomerulopathy of Aging 
Molecular and Cellular Biology  2002;22(6):1893-1902.
Apoliprotein J (apoJ)/clusterin has attracted considerable interest based on its inducibility in multiple injury processes and accumulation at sites of remodeling, regression, and degeneration. We therefore sought to investigate apoJ/clusterin's role in kidney aging, as this may reveal the accumulated effects of diminished protection. Aging mice deficient in apoJ/clusterin developed a progressive glomerulopathy characterized by the deposition of immune complexes in the mesangium. Up to 75% of glomeruli in apoJ/clusterin-deficient mice exhibited moderate to severe mesangial lesions by 21 months of age. Wild-type and hemizygous mice exhibited little or no glomerular pathology. In the apoJ/clusterin-deficient mice, immune complexes of immunoglobulin G (IgG), IgM, IgA, and in some cases C1q, C3, and C9 were detectable as early as 4 weeks of age. Electron microscopy revealed the accumulation of electron-dense material in the mesangial matrix and age-dependent formation of intramesangial tubulo-fibrillary structures. Even the most extensively damaged glomeruli showed no evidence of inflammation or necrosis. In young apoJ/clusterin-deficient animals, the development of immune complex lesions was accelerated by unilateral nephrectomy-induced hyperfiltration. Injected immune complexes localized to the mesangium of apoJ/clusterin-deficient but not wild-type mice. These results establish a protective role of apoJ/clusterin against chronic glomerular kidney disease and support the hypothesis that apoJ/clusterin modifies immune complex metabolism and disposal.
PMCID: PMC135592  PMID: 11865066
18.  Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis 
Journal of Clinical Investigation  2000;106(9):1105-1113.
Apolipoprotein J/clusterin (apoJ/clusterin), an intriguing protein with unknown function, is induced in myocarditis and numerous other inflammatory injuries. To test its ability to modify myosin-induced autoimmune myocarditis, we generated apoJ-deficient mice. ApoJ-deficient and wild-type mice exhibited similar initial onset of myocarditis, as evidenced by the induction of two early markers of the T cell–mediated immune response, MHC-II and TNF receptor p55. Furthermore, autoantibodies against the primary antigen cardiac myosin were induced to the same extent. Although the same proportion of challenged animals exhibited some degree of inflammatory infiltrate, inflammation was more severe in apoJ-deficient animals. Inflammatory lesions were more diffuse and extensive in apoJ-deficient mice, particularly in females. In marked contrast to wild-type animals, the development of a strong generalized secondary response against cardiac antigens in apoJ-deficient mice was predictive of severe myocarditis. Wild-type mice with a strong Ab response to secondary antigens appeared to be protected from severe inflammation. After resolution of inflammation, apoJ-deficient, but not wild-type, mice exhibited cardiac function impairment and severe myocardial scarring. These results suggest that apoJ limits progression of autoimmune myocarditis and protects the heart from postinflammatory tissue destruction.
PMCID: PMC301413  PMID: 11067863
19.  The Ron/STK receptor tyrosine kinase is essential for peri-implantation development in the mouse 
Journal of Clinical Investigation  1999;103(9):1277-1285.
The Ron/STK receptor tyrosine kinase is a member of the c-Met family of receptors and is activated by hepatocyte growth factor–like protein (HGFL). Ron activation results in a variety of cellular responses in vitro, such as activation of macrophages, proliferation, migration, and invasion, suggesting a broad biologic role in vivo. Nevertheless, HGFL-deficient mice grow to adulthood with few appreciable phenotypic abnormalities. We report here that in striking contrast to the loss of its only known ligand, complete loss of Ron leads to early embryonic death. Embryos that are devoid of Ron (Ron–/–) are viable through the blastocyst stage of development but fail to survive past the peri-implantation period. In situ hybridization analysis demonstrates that Ron is expressed in the trophectoderm at embryonic day (E) 3.5 and is maintained in extraembryonic tissue through E7.5, compatible with an essential function at this stage of development. Hemizygous mice (Ron+/–) grow to adulthood; however, these mice are highly susceptible to endotoxic shock and appear to be compromised in their ability to downregulate nitric oxide production. These results demonstrate a novel role for Ron in early mouse development and suggest that Ron plays a limiting role in the inflammatory response.
PMCID: PMC408470  PMID: 10225971

Results 1-19 (19)