PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Multivalent Interactions Between Lectins and Supramolecular Complexes: Galectin-1 and Self-Assembled Pseudopolyrotaxanes 
Chemistry & biology  2007;14(10):1140-1151.
Summary
Supramolecular chemistry has been employed to develop flexible and adaptable multivalent neoglycoconjugates for binding galectin-1 (Gal-1). Gal-1, a dimeric lectin with two galactoside-binding sites, regulates cancer progression and immune responses. Self-assembled pseudopolyrotaxanes comprised of lactoside-displaying cyclodextrin (LCD) “beads” threaded onto polyviologen “strings,” display mobile ligands as a result of cyclodextrin rotation about, and limited translation along, the polymer chain. The pseudopolyrotaxanes rapidly and efficiently precipitate Gal-1 and provide valency-corrected enhancements of up to 30-fold over native lactose and 20-fold over free LCD in a T-cell agglutination assay. A supramolecular stastical effect was observed, wherein the efficacy of Gal-1 inhibition correlates with the number of ligands connected to each other solely through mechanical and noncovalent interactions. Such flexible and adaptable self-assembled pseudopolyrotaxanes show promise for the study of multivalent interactions and targeting of therapeutically relevant lectins.
doi:10.1016/j.chembiol.2007.09.007
PMCID: PMC2072908  PMID: 17961826
2.  Galectin-1 induces nuclear translocation of Endonuclease G in caspase- and cytochrome c-independent T cell death1 
Cell death and differentiation  2004;11(12):1277-1286.
Galectin-1, a mammalian lectin expressed in many tissues, induces death of diverse cell types, including lymphocytes and tumor cells. The galectin-1 T cell death pathway is novel and distinct from other death pathways, including those initiated by Fas and corticosteroids. We have found that galectin-1 binding to human T cell lines triggered rapid translocation of endonuclease G from mitochondria to nuclei. However, endonuclease G nuclear translocation occurred without cytochrome c release from mitochondria, without nuclear translocation of apoptosis inducing factor, and prior to loss of mitochondrial membrane potential. Galectin-1 treatment did not result in caspase activation, nor was death blocked by caspase inhibitors. However, galectin-1 cell death was inhibited by intracellular expression of galectin-3, and galectin-3 expression inhibited the eventual loss of mitochondrial membrane potential. Galectin-1 induced cell death proceeds via a caspase-independent pathway that involves a unique pattern of mitochondrial events, and different galectin family members can coordinately regulate susceptibility to cell death.
doi:10.1038/sj.cdd.4401485
PMCID: PMC1201488  PMID: 15297883
galectin; apoptosis; T lymphocyte; Endonuclease G; human; phosphatidylserine (PS); z-Val-Ala-Asp(OMe)-CH2F (zVAD-fmk); z-Asp-Glu-Val-Asp(OMe)-CH2F (zDEVD-fmk); poly(ADP-ribose)polymerase (PARP); 7-amino-actinomycin D (7AAD); z-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin (zDEVD-AFC); mitochondrial membrane potential (Δψm); endonuclease G (EndoG); 10-N-nonyl acridine orange (NAO); Apoptosis inducing factor (AIF); truncated Bid (tBid); propidium iodide (PI); fluorescein isothiocyanate (FITC)

Results 1-2 (2)