PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (25)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Recent thymic emigrants are tolerized in the absence of inflammation 
CD4+ and CD8+ recent thymic emigrants (RTEs) exhibit an anergic phenotype after encounter with self-antigen in the periphery. In the presence of inflammation, both CD4+ and CD8+ RTEs can be converted into competent diabetogenic effector cells.
T cell development requires a period of postthymic maturation. Why this is the case has remained a mystery, particularly given the rigors of intrathymic developmental checkpoints, successfully traversed by only ∼5% of thymocytes. We now show that the first few weeks of T cell residence in the lymphoid periphery define a period of heightened susceptibility to tolerance induction to tissue-restricted antigens (TRAs), the outcome of which depends on the context in which recent thymic emigrants (RTEs) encounter antigen. After encounter with TRAs in the absence of inflammation, RTEs exhibited defects in proliferation, diminished cytokine production, elevated expression of anergy-associated genes, and diminished diabetogenicity. These properties were mirrored in vitro by enhanced RTE susceptibility to regulatory T cell–mediated suppression. In the presence of inflammation, RTEs and mature T cells were, in contrast, equally capable of inducing diabetes, proliferating, and producing cytokines. Thus, recirculating RTEs encounter TRAs during a transitional developmental stage that facilitates tolerance induction, but inflammation converts antigen-exposed, tolerance-prone RTEs into competent effector cells.
doi:10.1084/jem.20151990
PMCID: PMC4886366  PMID: 27139493
2.  CD8+ recent thymic emigrants exhibit increased responses to low affinity ligands and improved access to peripheral sites of inflammation 
To explore the TCR sensitivity of recent thymic emigrants (RTEs), we triggered T cells with altered peptide ligands (APLs). Upon peptide stimulation in vitro, RTEs exhibited increased TCR signal transduction, and following infection in vivo with APL-expressing bacteria, CD8 RTEs expanded to a greater extent in response to low affinity antigens than their mature T cell counterparts. RTEs skewed to short-lived effector cells in response to all APLs but were also characterized by diminished cytokine production. RTEs responding to infection expressed increased levels of VLA-4, with consequent improved entry into inflamed tissue and pathogen clearance. These positive outcomes were offset by the capacity of RTEs to elicit autoimmunity. Overall, salient features of CD8 RTE biology should inform strategies to improve neonatal vaccination and therapies for cancer and HIV, as RTEs make up a large proportion of the T cells in lymphodepleted environments.
doi:10.4049/jimmunol.1401870
PMCID: PMC4170019  PMID: 25172492
3.  Recent thymic emigrants and mature naïve T cells exhibit differential DNA methylation at key cytokine loci 
Recent thymic emigrants (RTEs) are the youngest T cells in the lymphoid periphery, and exhibit phenotypic and functional characteristics distinct from those of their more mature counterparts in the naïve peripheral T cell pool. We show here that the Il2 and Il4 promoter regions of naïve CD4+ RTEs are characterized by site-specific hypermethylation compared to those of both mature naïve (MN) T cells and the thymocyte precursors of RTEs. Thus, RTEs do not merely occupy a midpoint between the thymus and the mature T cell pool, but represent a distinct transitional T cell population. Furthermore, RTEs and MN T cells exhibit distinct CpG DNA methylation patterns both before and after activation. Compared to MN T cells, RTEs express higher levels of several enzymes that modify DNA methylation, and inhibiting methylation during culture allows RTEs to reach MN T cell levels of cytokine production. Collectively, these data suggest that the functional differences that distinguish RTEs from MN T cells are influenced by epigenetic mechanisms and provide clues to a mechanistic basis for post-thymic maturation.
doi:10.4049/jimmunol.1300181
PMCID: PMC3679312  PMID: 23686491
4.  Heme exporter FLVCR is required for T cell development and peripheral survival 
All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid (TCA) cycle intermediate succinyl Coenzyme A for incorporation into hemoproteins such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12 transmembrane domain surface protein that exports heme from cells and was previously shown to be required for erythroid development. Here we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αβ T cell development at the CD4+CD8+ double-positive stage, though other lymphoid lineages were unaffected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4+ and CD8+ T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily (MFS) metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage.
doi:10.4049/jimmunol.1402172
PMCID: PMC4323866  PMID: 25582857
5.  ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis 
Protective CD4 T cells specific for M. tuberculosis (Mtb) are maintained in the lungs during active Mtb infection. Similar to memory CD4 T cells, persistence of these Mtb-specific cells requires intrinsic expression of Bcl6 and ICOS.
Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1+ cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1+ cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB.
doi:10.1084/jem.20141518
PMCID: PMC4419347  PMID: 25918344
6.  Uneven colonization of the lymphoid periphery by T cells that undergo early TCRα rearrangements1 
A sparse population of thymocytes undergoes TCRα gene rearrangement early in development, before the double positive stage. The potential of these cells to contribute to the peripheral T cell pool is unknown. To examine the peripheral T cell compartment expressing a repertoire biased to early TCR gene rearrangements, we developed a mouse model in which TCRα rearrangements are restricted to the double negative stage of thymocyte development. These mice carry floxed RAG2 alleles and a Cre transgene driven by the CD4 promoter. As expected, conventional T cell development is compromised in such Cre(+) RAG2fl/fl mice, and the TCRαβ+ T cells that develop are limited in their TCRα repertoire, preferentially utilizing early-rearranging Vα genes. In the gut, the Thy-1+TCRαβ+ intraepithelial lymphocyte (IEL) compartment is surprisingly intact, while the Thy-1−TCRαβ+ subset is almost completely absent. Thus, T cells expressing a TCRα repertoire that is the product of early gene rearrangements can preferentially populate distinct IEL compartments. Despite this capacity, Cre(+) RAG2fl/fl T cell progenitors cannot compete with wild-type (WT) T cell progenitors in mixed bone marrow chimeras, suggesting that in normal mice, there is only a small contribution to the peripheral T cell pool by cells that have undergone early TCRα rearrangements. In the absence of WT competitors, aggressive homeostatic proliferation in the IEL compartment can promote a relatively normal Thy-1+ TCRαβ+ T cell pool from the limited population derived from Cre(+) RAG2fl/fl progenitors.
doi:10.4049/jimmunol.0804180
PMCID: PMC2709763  PMID: 19299725
T cells; T Cell Receptors; Repertoire Development; Gene Rearrangement; Mucosa
7.  Cutting Edge: TCR Revision Affects Predominantly Foxp3− Cells and Skews Them toward the Th17 Lineage1 
CD4+ T cells respond to peripheral endogenous superantigen stimulation by undergoing deletion or TCR revision. The latter involves RAG re-expression, TCR gene rearrangement, and expression of a novel TCR. TCR-revised T cells are functional and express a diverse TCR repertoire. Because TCR revision harbors the potential to create self-reactivity, it is important to explore whether T cells known to be self-reactive (regulatory T cells) or those involved in autoimmunity (Th17 cells) arise from TCR revision. Interestingly, we observed that Foxp3+ cells are excluded from revising their TCR and that only a small fraction of postrevision cells expresses Foxp3. In contrast, Th17 cells are 20 times more frequent among revised than among C57BL/6 CD4+ T cells, indicating that postrevision cells are biased toward the Th17 lineage. The link between Th17 differentiation and TCR revision might be highly relevant to the role of Th17 cells in promoting autoimmunity.
PMCID: PMC2776039  PMID: 17947636
8.  Mutation in Fas Ligand Impairs Maturation of Thymocytes Bearing Moderate Affinity T Cell Receptors 
Fas ligand, best known as a death-inducer, is also a costimulatory molecule required for maximal proliferation of mature antigen-specific CD4+ and CD8+ T cells. We now extend the role of Fas ligand by showing that it can also influence thymocyte development. T cell maturation in some, but not all, strains of TCR transgenic mice is severely impaired in thymocytes expressing mutant Fas ligand incapable of interacting with Fas. Mutant Fas ligand inhibits neither negative selection nor death by neglect. Instead, it appears to modulate positive selection of thymocytes expressing both class I– and class II–restricted T cell receptors of moderate affinity for their positively selecting ligands. Fas ligand is therefore an inducer of death, a costimulator of peripheral T cell activation, and an accessory molecule in positive selection.
doi:10.1084/jem.20030220
PMCID: PMC2194074  PMID: 12860933
Fas ligand; T cell development; TNF family; reverse signaling; gld
9.  Maximal Proliferation of Cytotoxic T Lymphocytes Requires Reverse Signaling through Fas Ligand  
Fas ligand (FasL/CD95L) is best known for its role in delivering apoptotic signals through its receptor, Fas (APO-1/CD95). In this study, we present evidence that FasL has a second role as a signaling receptor. Alloantigen-specific proliferation by multiple FasL− murine CTL lines is depressed compared to that of FasL+ CTL lines. FasL− CTLs kill efficiently on a per recovered cell basis and can achieve wild-type levels of proliferation upon stimulation by optimal doses of anti-CD3, suggesting the lack of a costimulatory signal during antigen stimulation. To test this hypothesis directly, soluble FasIgG, a fusion protein of murine Fas and human IgG1, was added to FasL+ CTLs to demonstrate that blocking cell surface Fas–FasL interactions mimics the depression observed for FasL− CTLs. In addition, plate-bound FasIgG in conjunction with suboptimal anti-CD3 stimulation augments proliferative signals in FasL+ but not FasL− CTLs. In contrast to these results with CD8+ T cells, alloantigen-stimulated FasL− CD4+ T cells proliferate vigorously compared to FasL+ cells. These data demonstrate that reverse signaling through FasL is required for CTLs to achieve maximal proliferation and may provide clues to differences in the homeostatic regulation of activated CD4+ and CD8+ T cells during an immune response.
PMCID: PMC2199194  PMID: 9419218
10.  The Ribosomal Protein Rpl22 Controls Ribosome Composition by Directly Repressing Expression of Its Own Paralog, Rpl22l1 
PLoS Genetics  2013;9(8):e1003708.
Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22−/− mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22−/− mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1) expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.
Author Summary
Translation is the process by which proteins are made within a cell. Ribosomes are the main macromolecular complexes involved in this process. Ribosomes are composed of ribosomal RNA and ribosomal proteins. Ribosomal proteins are generally thought to be structural components of the ribosome but recent findings have suggested that they might have a regulatory function as well. A growing number of human diseases have been linked to mutations in genes encoding factors involved in ribosome biogenesis and translation. These include developmental malformations, inherited bone marrow failure syndromes and cancer in a variety of organisms. Here, we describe the role of one ribosomal protein regulating another. We provide evidence that ribosomal proteins can influence the composition of the ribosome, which we hypothesize, may impact the function of the ribosome.
doi:10.1371/journal.pgen.1003708
PMCID: PMC3750023  PMID: 23990801
11.  Immune Vulnerability of Infants to Tuberculosis 
One of the challenges faced by the infant immune system is learning to distinguish the myriad of foreign but nonthreatening antigens encountered from those expressed by true pathogens. This balance is reflected in the diminished production of proinflammatory cytokines by both innate and adaptive immune cells in the infant. A downside of this bias is that several factors critical for controlling Mycobacterium tuberculosis infection are significantly restricted in infants, including TNF, IL-1, and IL-12. Furthermore, infant T cells are inherently less capable of differentiating into IFN-γ-producing T cells. As a result, infected infants are 5–10 times more likely than adults to develop active tuberculosis (TB) and have higher rates of severe disseminated disease, including miliary TB and meningitis. Infant TB is a fundamentally different disease than TB in immune competent adults. Immunotherapeutics, therefore, should be specifically evaluated in infants before they are routinely employed to treat TB in this age group. Modalities aimed at reducing inflammation, which may be beneficial for adjunctive therapy of some forms of TB in older children and adults, may be of no benefit or even harmful in infants who manifest much less inflammatory disease.
doi:10.1155/2013/781320
PMCID: PMC3666431  PMID: 23762096
12.  Homeostatic Signals do not Drive Post-thymic T cell Maturation 
Cellular Immunology  2012;274(1-2):39-45.
Recent thymic emigrants, the youngest T cells in the lymphoid periphery, undergo a 3-week-long period of functional and phenotypic maturation before being incorporated into the pool of mature, naïve T cells. Previous studies indicate that this maturation requires T cell exit from the thymus and access to secondary lymphoid organs, but is MHC-independent. We now show that post-thymic T cell maturation is independent of homeostatic and costimulatory pathways, requiring neither signals delivered by IL-7 nor CD80/86. Furthermore, while CCR7/CCL19,21-regulated homing of recent thymic emigrants to the T cell zones within the secondary lymphoid organs is not required for post-thymic T cell maturation, an intact dendritic cell compartment modulates this process. It is thus clear that, unlike T cell development and homeostasis, post-thymic maturation is focused not on interrogating the T cell receptor or the cell’s responsiveness to homeostatic or costimulatory signals, but on some as yet unrecognized property.
doi:10.1016/j.cellimm.2012.02.005
PMCID: PMC3334402  PMID: 22398309
recent thymic emigrants; IL-7; dendritic cells
13.  Thymus-autonomous T cell development in the absence of progenitor import 
The Journal of Experimental Medicine  2012;209(8):1409-1417.
To be added
Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell–deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2−/−γc−/−KitW/Wv mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2−/−γc−/−KitW/Wv hosts, γc-mediated signals alone played a key role in the competition between thymus-resident and bone marrow–derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.
doi:10.1084/jem.20120846
PMCID: PMC3420332  PMID: 22778389
14.  Modulation of TCRβ Surface Expression During TCR Revision 
Cellular immunology  2011;272(2):124-129.
TCR revision is a tolerance mechanism by which self-reactive TCRs expressed by mature CD4+ peripheral T cells are replaced by receptors encoded by genes generated by post-thymic DNA rearrangement. The down modulation of surface TCR expression initiates TCR revision, and serves as a likely trigger for the induction of the recombinase machinery. We show here in a Vβ5 transgenic mouse model system that downregulation of the self-reactive transgene-encoded TCR is not maintained by transgene loss or diminished transcription or translation. The downregulation of surface TCR expression likely occurs in two stages, only one of which requires tolerogen expression.
doi:10.1016/j.cellimm.2011.10.022
PMCID: PMC3244515  PMID: 22138498
receptor revision; peripheral T cell tolerance; TCR expression
15.  Bcl-2-interacting mediator of cell death influences autoantigen-driven deletion and TCR revision 
Peripheral CD4+Vβ5+ T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of post-revision CD4+Vβ5− T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the post-revision population. Here, we investigate the role of Bim-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4+ T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR expressing cells are TCR revision intermediates, and that the population of RAG-expressing, revising CD4+ T cells is increased in Bim deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the post-revision repertoire.
doi:10.4049/jimmunol.1002933
PMCID: PMC3233758  PMID: 21148799
TCR revision; tolerance; Bim; Bcl-2; apoptosis; T cell selection
16.  Post-thymic maturation: young T cells assert their individuality 
Nature reviews. Immunology  2011;11(8):544-549.
T cell maturation was once thought to occur entirely within the thymus. Now, evidence is mounting that the youngest peripheral T cells in both mice and humans comprise a distinct population from their more mature, yet still naive, counterparts. These cells, termed recent thymic emigrants (RTEs), undergo a process of post-thymic maturation that can be monitored at the levels of cell phenotype and immune function. Understanding this final maturation step in the process of generating useful and safe T cells is of clinical relevance, given that RTEs are over-represented in neonates and in adults recovering from lymphopenia. Post-thymic maturation may function to ensure T cell fitness and self tolerance.
doi:10.1038/nri3028
PMCID: PMC3241610  PMID: 21779032
17.  TCR revision generates functional CD4+ T cells1 
CD4+Vβ5+ peripheral T cells in B6 mice respond to encounter with a peripherally-expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. While post-revision CD4+Vβ5−TCRβ+ T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli, and thus may benefit the host. We now demonstrate that post-revision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, post-revision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of post-revision cells is not driven by the transgene-encoded receptor. Post-revision cells proliferate extensively to commensal bacterial Ags and can generate I-Ab-restricted responses to Ag by producing IFNγ following Listeria monocytogenes challenge. These data show that rescued post-revision T cells are responsive to homeostatic signals and recognize self and foreign peptides in the context of self MHC, and are thus useful to the host.
doi:10.4049/jimmunol.1002696
PMCID: PMC3233755  PMID: 20971922
TCR revision; tolerance; T cell homeostasis
18.  Rag Deletion in Peripheral T Cells Blocks TCR Revision 
Mature CD4+Vβ5+ T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or T cell receptor (TCR) revision. In Vβ5 transgenic mice, this latter tolerance pathway results in the appearance of CD4+Vβ5−TCRβ+ T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of Vβ-DJβ recombination intermediates in peripheral CD4+ T cells. Because post-thymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We now show that Rag deletion in post-positive selection T cells in Vβ5 transgenic mice blocks TCR revision in vivo, and that mature peripheral T cells sorted to remove cells bearing endogenous TCRβ chains can express newly generated TCRβ molecules in adoptive hosts. These findings unambiguously demonstrate post-thymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4+ T cells.
doi:10.4049/jimmunol.1000876
PMCID: PMC2929250  PMID: 20435935
TCR revision; RAG1; RAG2; dLck-cre transgenic
19.  Spontaneous development of IL-17-producing γδ T cells in the thymus occurs via a TGFβ1-dependent mechanism1 
In naïve animals, γδ T cells are innate sources of IL-17, a potent proinflammatory cytokine mediating bacterial clearance as well as autoimmunity. However, mechanisms underlying the generation of these cells in vivo remain unclear. Here we show that TGFβ1 plays a key role in the generation of IL-17+ γδ T cells, and that it mainly occurs in the thymus particularly during the postnatal period. Interestingly, IL-17+ γδ TCR+ thymocytes were mainly CD44highCD25low cells, which seem to derive from DN4 γδ TCR+ cells that acquired CD44 and IL-17 expression. Our findings identify a novel developmental pathway during which IL-17-competent γδ T cells arise in the thymus by a TGFβ1-dependent mechanism.
doi:10.4049/jimmunol.0903539
PMCID: PMC2844788  PMID: 20061408
γδ T cells; IL-17; TGFβ
20.  MHC drives TCR repertoire shaping, but not maturation, in recent thymic emigrants1 
After developing in the thymus, recent thymic emigrants (RTEs) enter the lymphoid periphery and undergo a maturation process as they transition into the mature naïve (MN) T cell compartment. This maturation presumably shapes RTEs into a pool of T cells best fit to function robustly in the periphery without causing autoimmunity; however, the mechanism and consequences of this maturation process remain unknown. Using a transgenic mouse system that specifically labels RTEs, we tested the influence of MHC molecules, key drivers of intrathymic T cell selection and naive peripheral T cell homeostasis, in shaping the RTE pool in the lymphoid periphery. We found that the TCRs expressed by RTEs are skewed to longer CDR3 regions compared to those of MN T cells, suggesting that MHC does streamline the TCR repertoire of T cells as they transition from the RTE to the MN T cell stage. This conclusion is borne out in studies in which the representation of individual TCRs was followed as a function of time since thymic egress. Surprisingly, we found that MHC is dispensable for the phenotypic and functional maturation of RTEs.
This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third party. The final, citable version of record can be found at www.jimmunol.org
doi:10.4049/jimmunol.0902313
PMCID: PMC2782759  PMID: 19915060
T cells; Cell Differentiation; Repertoire Development; Recent Thymic Emigrants; Homeostasis
21.  Cell-Extrinsic Defective Lymphocyte Development in Lmna-/- Mice 
PLoS ONE  2010;5(4):e10127.
Background
Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.
Principal Findings
Lmna-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4+ and CD8+ T cells. Transplantation of Lmna-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.
Conclusions
Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna-/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.
doi:10.1371/journal.pone.0010127
PMCID: PMC2853576  PMID: 20405040
22.  Contact with secondary lymphoid organs drives post-thymic T cell maturation 
T cell development, originally thought to be completed in the thymus, has recently been shown to continue for several weeks in the lymphoid periphery. The forces that drive this peripheral maturation are unclear. The use of mice transgenic for GFP driven by the RAG2 promoter has enabled the ready identification and analysis of recent thymic emigrants (RTEs). Here, we show that RTE maturation is a progressive process and is promoted by T cell exit from the thymus. Further, we show that this maturation occurs within secondary lymphoid organs and does not require extensive lymphocyte recirculation.
PMCID: PMC2679686  PMID: 18832674
T cells; Thymus; Spleen and Lymph Nodes; Tolerance; Cell Differentiation
23.  Back to the Thymus: Peripheral T Cells Come Home 
Immunology and cell biology  2008;87(1):58-64.
The thymus has long been known as the generative organ for the T cell arm of the immune system. To perform this role, the thymus was thought to require protection from antigenic and cellular insult from the “outside world”, with the notable exception of the continual influx of progenitor cells required to initiate the complicated process of T cell differentiation. Overwhelming evidence that mature T cells can recirculate and persist in the thymus has required us to revamp this earlier view of the thymus as detached from outside influence. In this review, we consider the evidence for T cell recirculation into the thymus, discuss the likely means and location of mature T cell entry, and speculate on the potential consequences of such close apposition between differentiating thymocytes and mature recirculating lymphocytes.
doi:10.1038/icb.2008.87
PMCID: PMC2679673  PMID: 19030016
thymus; T cell recirculation; negative selection; positive selection
24.  Fas-mediated elimination of antigen-presenting cells and autoreactive T cells contribute to prevention of autoimmunity 
Immunity  2007;26(5):629-641.
Summary
Fas (Apo-1, CD95) receptor has been suggested to control T cell expansion by triggering T cell-autonomous apoptosis. This paradigm is based on the extensive lymphoproliferation and systemic autoimmunity in mice and humans lacking Fas or its ligand. However, with systemic loss of Fas, it is unclear whether T cell-extrinsic mechanisms contribute to autoimmunity. We found that tissue-specific deletion of Fas in mouse antigen presenting cells (APC) was sufficient to cause systemic autoimmunity, implying that normally APC are destroyed during immune responses via a Fas-mediated mechanism. Fas expression by APC was increased by exposure to microbial stimuli. Analysis of mice with Fas loss restricted to T cells revealed that Fas indeed controls autoimmune T cells, but not T cells responding to strong antigenic stimulation. Thus, Fas-dependent elimination of APC is a major regulatory mechanism curbing autoimmune responses and acts in concert with Fas-mediated regulation of chronically activated autoimmune T cells.
doi:10.1016/j.immuni.2007.03.016
PMCID: PMC2575811  PMID: 17509906
25.  An Essential Role for Non–Bone Marrow–Derived Cells in Control of Pseudomonas aeruginosa Pneumonia 
MyD88 is an adapter protein required for the induction of proinflammatory cytokines by most Toll-like receptors (TLR), and Pseudomonas aeruginosa expresses ligands for multiple TLRs. MyD88−/− (KO) mice are highly susceptible to aerosolized P. aeruginosa, failing to elicit an early inflammatory response and permitting a 3-log increase in bacterial CFU in the lungs by 24 h after infection. We hypothesized that alveolar macrophages are the first cells to recognize and kill aerosolized P. aeruginosa in an MyD88-dependent fashion due to their location within the airways. To determine which cells in the lungs mediate MyD88-dependent defenses against P. aeruginosa, we generated radiation bone marrow (BM) chimeras between MyD88KO and wild-type (WT) mice. MyD88KO mice transplanted with MyD88KO BM (MyD88KO→MyD88KO mice) displayed uncontrolled bacterial replication, whereas all other chimeras controlled the infection by 24 h. However, at 4 h, both MyD88KO→MyD88KO and WT→MyD88KO mice permitted intrapulmonary bacterial replication, whereas MyD88KO→WT and WT→WT mice did not, indicating that the source of BM had little impact on the early control of infection. Similarly, the genotype of the recipient rather than that of the BM donor determined early neutrophil recruitment to the lungs. Whereas intrapulmonary TNF-α and IL-1β production were associated with WT BM, levels of the CXC chemokines MIP-2 and KC as well as GM-CSF were associated with recipient genotype. We conclude that lung parenchymal and BM-derived cells collaborate in the MyD88-dependent response to P. aeruginosa infection in the lungs in mice.
doi:10.1165/rcmb.2005-0199OC
PMCID: PMC2715354  PMID: 16100080
alveolar macrophages; lung parenchyma; MyD88; neutrophils; Pseudomonas aeruginosa; Toll-like receptors

Results 1-25 (25)