Search tips
Search criteria

Results 1-25 (39)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment 
Nature Communications  2014;5:5073.
Signal transduction by receptor tyrosine kinases (RTKs) and nuclear receptors for steroid hormones is essential for body homeostasis, but the cross-talk between these receptor families is poorly understood. We observed that glucocorticoids inhibit signalling downstream of EGFR, an RTK. The underlying mechanism entails suppression of EGFR’s positive feedback loops and simultaneous triggering of negative feedback loops that normally restrain EGFR. Our studies in mice reveal that the regulation of EGFR’s feedback loops by glucocorticoids translates to circadian control of EGFR signalling: EGFR signals are suppressed by high glucocorticoids during the active phase (night-time in rodents), while EGFR signals are enhanced during the resting phase. Consistent with this pattern, treatment of animals bearing EGFR-driven tumours with a specific kinase inhibitor was more effective if administered during the resting phase of the day, when glucocorticoids are low. These findings support a circadian clock-based paradigm in cancer therapy.
Glucocorticoids are released in a diurnal pattern. Here, the authors show that EGF receptor (EGFR) signalling is negatively regulated by glucocorticoids, and that EGFR inhibitor has stronger antitumour effects when administered during the resting phase, when glucocorticoids are low, offering potential optimization of cancer therapy regimens.
PMCID: PMC4205848  PMID: 25278152
2.  Differential Response to α-Oxoaldehydes in Tamoxifen Resistant MCF-7 Breast Cancer Cells 
PLoS ONE  2014;9(7):e101473.
Tamoxifen is the standard adjuvant endocrine therapy for estrogen-receptor positive premenopausal breast cancer patients. However, tamoxifen resistance is frequently observed under therapy. A tamoxifen resistant cell line has been generated from the estrogen receptor positive mamma carcinoma cell line MCF-7 and was analyzed for putative differences in the aldehyde defence system and accumulation of advanced glycation end products (AGE). In comparison to wt MCF-7 cells, these tamoxifen resistant cells were more sensitive to the dicarbonyl compounds glyoxal and methylglyoxal and displayed increased caspase activity, p38-MAPK- and IκBα-phosphorylation. However, mRNA accumulation of the aldehyde- and AGE-defence enzymes glyoxalase-1 and -2 (GLO1, GLO2) as well as fructosamine-3-kinase (FN3K) was not significantly altered. Tamoxifen resistant cells contained less free sulfhydryl-groups (glutathione) suggesting that the increased sensitivity towards the dicarbonyls was due to a higher sensitivity towards reactive oxygen species which are associated with dicarbonyl stress. To further analyse, if these data are of more general importance, key experiments were replicated with tamoxifen resistant MCF-7 cell lines from two independent sources. These cell lines were also more sensitive to aldehydes, especially glyoxal, but were different in their cellular signalling responses to the aldehydes. In conclusion, glyoxalases and other aldehyde defence enzymes might represent a promising target for the therapy of tamoxifen resistant breast cancers.
PMCID: PMC4077828  PMID: 24983248
5.  Protein signatures of oxidative stress response in a patient specific cell line model for autism 
Molecular Autism  2014;5:10.
Known genetic variants can account for 10% to 20% of all cases with autism spectrum disorders (ASD). Overlapping cellular pathomechanisms common to neurons of the central nervous system (CNS) and in tissues of peripheral organs, such as immune dysregulation, oxidative stress and dysfunctions in mitochondrial and protein synthesis metabolism, were suggested to support the wide spectrum of ASD on unifying disease phenotype. Here, we studied in patient-derived lymphoblastoid cell lines (LCLs) how an ASD-specific mutation in ribosomal protein RPL10 (RPL10[H213Q]) generates a distinct protein signature. We compared the RPL10[H213Q] expression pattern to expression patterns derived from unrelated ASD patients without RPL10[H213Q] mutation. In addition, a yeast rpl10 deficiency model served in a proof-of-principle study to test for alterations in protein patterns in response to oxidative stress.
Protein extracts of LCLs from patients, relatives and controls, as well as diploid yeast cells hemizygous for rpl10, were subjected to two-dimensional gel electrophoresis and differentially regulated spots were identified by mass spectrometry. Subsequently, Gene Ontology database (GO)-term enrichment and network analysis was performed to map the identified proteins into cellular pathways.
The protein signature generated by RPL10[H213Q] is a functionally related subset of the ASD-specific protein signature, sharing redox-sensitive elements in energy-, protein- and redox-metabolism. In yeast, rpl10 deficiency generates a specific protein signature, harboring components of pathways identified in both the RPL10[H213Q] subjects’ and the ASD patients’ set. Importantly, the rpl10 deficiency signature is a subset of the signature resulting from response of wild-type yeast to oxidative stress.
Redox-sensitive protein signatures mapping into cellular pathways with pathophysiology in ASD have been identified in both LCLs carrying the ASD-specific mutation RPL10[H213Q] and LCLs from ASD patients without this mutation. At pathway levels, this redox-sensitive protein signature has also been identified in a yeast rpl10 deficiency and an oxidative stress model. These observations point to a common molecular pathomechanism in ASD, characterized in our study by dysregulation of redox balance. Importantly, this can be triggered by the known ASD-RPL10[H213Q] mutation or by yet unknown mutations of the ASD cohort that act upstream of RPL10 in differential expression of redox-sensitive proteins.
PMCID: PMC3931328  PMID: 24512814
Autism spectrum disorder; RPL10; Translation; Protein expression; Redox-sensitive protein signature; Oxidative stress response; Energy metabolism
6.  Epidermal Growth-Factor – Induced Transcript Isoform Variation Drives Mammary Cell Migration 
PLoS ONE  2013;8(12):e80566.
Signal-induced transcript isoform variation (TIV) includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF). We show that EGF rapidly – within one hour – induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.
PMCID: PMC3855657  PMID: 24324612
7.  Live cell assays to identify regulators of ER to Golgi trafficking 
Traffic (Copenhagen, Denmark)  2012;13(3):416-432.
We applied fluorescence microscopy based quantitative assays to living cells to identify regulators of ER to Golgi trafficking and/or Golgi complex maintenance. We first validated an automated procedure to identify factors, which influence Golgi to ER re-localization of GalT-CFP after brefeldin A (BFA) addition and/or wash-out. We then tested 14 proteins that localize to the ER and/or Golgi complex when over-expressed for a role in ER to Golgi trafficking. Nine of them interfered with the rate of BFA induced redistribution of GalT-CFP from the Golgi complex to the ER, 6 of them interfered with GalT-CFP redistribution from the ER to a juxtanuclear region (i.e., Golgi complex) after BFA wash-out, and 6 of them were positive effectors in both assays. Notably, our live cell approach captures regulator function in ER to Golgi trafficking, that were missed in previous fixed cell assays; as well as assigns putative roles for other less characterized proteins. Moreover, we show that our assays can be extended to RNAi and chemical screens.
PMCID: PMC3711101  PMID: 22132776
Brefeldin A (BFA); GalT; ER to Golgi trafficking; YIPF; GOT1B; USE1; SACM1L
8.  ICGC PedBrain: Dissecting the genomic complexity underlying medulloblastoma 
Jones, David TW | Jäger, Natalie | Kool, Marcel | Zichner, Thomas | Hutter, Barbara | Sultan, Marc | Cho, Yoon-Jae | Pugh, Trevor J | Hovestadt, Volker | Stütz, Adrian M | Rausch, Tobias | Warnatz, Hans-Jörg | Ryzhova, Marina | Bender, Sebastian | Sturm, Dominik | Pleier, Sabrina | Cin, Huriye | Pfaff, Elke | Sieber, Laura | Wittmann, Andrea | Remke, Marc | Witt, Hendrik | Hutter, Sonja | Tzaridis, Theophilos | Weischenfeldt, Joachim | Raeder, Benjamin | Avci, Meryem | Amstislavskiy, Vyacheslav | Zapatka, Marc | Weber, Ursula D | Wang, Qi | Lasitschka, Bärbel | Bartholomae, Cynthia C | Schmidt, Manfred | von Kalle, Christof | Ast, Volker | Lawerenz, Chris | Eils, Jürgen | Kabbe, Rolf | Benes, Vladimir | van Sluis, Peter | Koster, Jan | Volckmann, Richard | Shih, David | Betts, Matthew J | Russell, Robert B | Coco, Simona | Tonini, Gian Paolo | Schüller, Ulrich | Hans, Volkmar | Graf, Norbert | Kim, Yoo-Jin | Monoranu, Camelia | Roggendorf, Wolfgang | Unterberg, Andreas | Herold-Mende, Christel | Milde, Till | Kulozik, Andreas E | von Deimling, Andreas | Witt, Olaf | Maass, Eberhard | Rössler, Jochen | Ebinger, Martin | Schuhmann, Martin U | Frühwald, Michael C | Hasselblatt, Martin | Jabado, Nada | Rutkowski, Stefan | von Bueren, André O | Williamson, Dan | Clifford, Steven C | McCabe, Martin G | Collins, V. Peter | Wolf, Stephan | Wiemann, Stefan | Lehrach, Hans | Brors, Benedikt | Scheurlen, Wolfram | Felsberg, Jörg | Reifenberger, Guido | Northcott, Paul A | Taylor, Michael D | Meyerson, Matthew | Pomeroy, Scott L | Yaspo, Marie-Laure | Korbel, Jan O | Korshunov, Andrey | Eils, Roland | Pfister, Stefan M | Lichter, Peter
Nature  2012;488(7409):100-105.
Medulloblastoma is an aggressively-growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and displays tremendous biological and clinical heterogeneity1. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life.
Four tumour subgroups with distinct clinical, biological and genetic profiles are currently discriminated2,3. WNT tumours, displaying activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens4. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis2. Group 3 & 4 tumours are molecularly less well-characterised, and also present the greatest clinical challenges2,3,5. The full repertoire of genetic events driving this distinction, however, remains unclear.
Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs. Tetraploidy was identified as a frequent early event in Group 3 & 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA-sequencing confirmed these alterations, and revealed the expression of the first medulloblastoma fusion genes. Chromatin modifiers were frequently altered across all subgroups.
These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 & 4 patients.
PMCID: PMC3662966  PMID: 22832583
9.  Epigenetic Upregulation of lncRNAs at 13q14.3 in Leukemia Is Linked to the In Cis Downregulation of a Gene Cluster That Targets NF-kB 
PLoS Genetics  2013;9(4):e1003373.
Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.3 that is recurrently deleted in solid tumors and hematopoietic malignancies like chronic lymphocytic leukemia (CLL). While no point mutations have been found in the protein coding candidate genes at 13q14.3, they are deregulated in malignant cells, suggesting an epigenetic tumor suppressor mechanism. We therefore characterized the epigenetic makeup of 13q14.3 in CLL cells and found histone modifications by chromatin-immunoprecipitation (ChIP) that are associated with activated transcription and significant DNA-demethylation at the transcriptional start sites of DLEU1 and DLEU2 using 5 different semi-quantitative and quantitative methods (aPRIMES, BioCOBRA, MCIp, MassARRAY, and bisulfite sequencing). These epigenetic aberrations were correlated with transcriptional deregulation of the neighboring candidate tumor suppressor genes, suggesting a coregulation in cis of this gene cluster. We found that the 13q14.3 genes in addition to their previously known functions regulate NF-kB activity, which we could show after overexpression, siRNA–mediated knockdown, and dominant-negative mutant genes by using Western blots with previously undescribed antibodies, by a customized ELISA as well as by reporter assays. In addition, we performed an unbiased screen of 810 human miRNAs and identified the miR-15/16 family of genes at 13q14.3 as the strongest inducers of NF-kB activity. In summary, the tumor suppressor mechanism at 13q14.3 is a cluster of genes controlled by two lncRNA genes that are regulated by DNA-methylation and histone modifications and whose members all regulate NF-kB. Therefore, the tumor suppressor mechanism in 13q14.3 underlines the role both of epigenetic aberrations and of lncRNA genes in human tumorigenesis and is an example of colocalization of a functionally related gene cluster.
Author Summary
Recent results suggest that genome regions not coding for proteins are read and transcribed into RNA. While the function for the majority of the resulting non-coding RNA molecules remains unclear, some of them are termed according to their length (typically 200–2,000 nucleotides) as long non-coding RNA (lncRNA) genes that play a role in regulating the activity of target genes. In most instances, this deregulation involves changes of so-called “epigenetic” marks associated with the DNA that are inherited to the cellular progeny without changes in the DNA sequence. Here we describe an example where two lncRNA genes (DLEU1 and DLEU2) are epigenetically deregulated together with a cluster of neighboring protein-coding tumor suppressor genes in almost all patients suffering from chronic lymphocytic leukemia. Such a common regulation suggests that the affected genes are involved in the same cellular pathway. In line with this notion, the 13q14.3 genes modulate the NF-kB signalling pathway, either inducing or repressing its activity. An activation of NF-kB has previously been shown to promote survival of the leukemic cells, underlining the importance of the 13q14.3 tumor suppressor locus for the pathomechanism of the disease.
PMCID: PMC3616974  PMID: 23593011
10.  Combinatorial targeting of FGF and ErbB receptors blocks growth and metastatic spread of breast cancer models 
Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor.
Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors.
The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity.
The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy.
PMCID: PMC3672810  PMID: 23343422
11.  Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer 
A genome-wide microRNA (miRNome) screen coupled with high-throughput monitoring of protein levels reveals complex, modular miRNA regulation of the EGFR-driven cell-cycle network, and identifies new miRNAs that can suppress breast cancer cell proliferation.
We interrogated, for the first time, a mammalian oncogenic signaling network with the miRNome and report the outputs at the protein level.Whole-genome microRNA (miRNA) effects on a given protein are generally mild, supporting a fine-tuning role for miRNAs, and these effects are dominated by sequence-matching mechanisms.We developed a novel network-analysis methodology with a bipartite graph model to identify proteins co-regulated by miRNAs. Besides the sequence-based mechanism, our results demonstrated that miRNAs simultaneously regulate several proteins belonging to the same functional module.We identified three miRNAs, miR-124, miR-147 and miR-193a-3p, as novel tumor suppressors that co-regulate EGFR-driven cell-cycle network proteins, and inhibit cell-cycle progression and proliferation in breast cancer.Our results demonstrate the potential to steer miRNA research toward the network level, underlining the need for systematic approaches before positioning miRNAs as drugs or drug targets.
The EGFR-driven cell-cycle pathway has been extensively studied due to its pivotal role in breast cancer proliferation and pathogenesis. Although several studies reported regulation of individual pathway components by microRNAs (miRNAs), little is known about how miRNAs coordinate the EGFR protein network on a global miRNA (miRNome) level. Here, we combined a large-scale miRNA screening approach with a high-throughput proteomic readout and network-based data analysis to identify which miRNAs are involved, and to uncover potential regulatory patterns. Our results indicated that the regulation of proteins by miRNAs is dominated by the nucleotide matching mechanism between seed sequences of the miRNAs and 3′-UTR of target genes. Furthermore, the novel network-analysis methodology we developed implied the existence of consistent intrinsic regulatory patterns where miRNAs simultaneously co-regulate several proteins acting in the same functional module. Finally, our approach led us to identify and validate three miRNAs (miR-124, miR-147 and miR-193a-3p) as novel tumor suppressors that co-target EGFR-driven cell-cycle network proteins and inhibit cell-cycle progression and proliferation in breast cancer.
PMCID: PMC3293631  PMID: 22333974
breast cancer; EGFR signaling; microRNA; miRNA–protein interaction network; network analysis
12.  MicroRNA-200c Represses Migration and Invasion of Breast Cancer Cells by Targeting Actin-Regulatory Proteins FHOD1 and PPM1F 
Molecular and Cellular Biology  2012;32(3):633-651.
MicroRNA-200c (miR-200c) has been shown to suppress epithelial-mesenchymal transition (EMT), which is attributed mainly to targeting of ZEB1/ZEB2, repressors of the cell-cell contact protein E-cadherin. Here we demonstrated that modulation of miR-200c in breast cancer cells regulates cell migration, cell elongation, and transforming growth factor β (TGF-β)-induced stress fiber formation by impacting the reorganization of cytoskeleton that is independent of the ZEB/E-cadherin axis. We identified FHOD1 and PPM1F, direct regulators of the actin cytoskeleton, as novel targets of miR-200c. Remarkably, expression levels of FHOD1 and PPM1F were inversely correlated with the level of miR-200c in breast cancer cell lines, breast cancer patient samples, and 58 cancer cell lines of various origins. Furthermore, individual knockdown/overexpression of these target genes phenocopied the effects of miR-200c overexpression/inhibition on cell elongation, stress fiber formation, migration, and invasion. Mechanistically, targeting of FHOD1 by miR-200c resulted in decreased expression and transcriptional activity of serum response factor (SRF), mediated by interference with the translocation of the SRF coactivator mycocardin-related transcription factor A (MRTF-A). This finally led to downregulation of the expression and phosphorylation of the SRF target myosin light chain 2 (MLC2) gene, required for stress fiber formation and contractility. Thus, miR-200c impacts on metastasis by regulating several EMT-related processes, including a novel mechanism involving the direct targeting of actin-regulatory proteins.
PMCID: PMC3266604  PMID: 22144583
13.  Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration 
BMC Biology  2011;9:54.
Cell migration is essential during development and in human disease progression including cancer. Most cell migration studies concentrate on known or predicted components of migration pathways.
Here we use data from a genome-wide RNAi morphology screen in Drosophila melanogaster cells together with bioinformatics to identify 26 new regulators of morphology and cytoskeletal organization in human cells. These include genes previously implicated in a wide range of functions, from mental retardation, Down syndrome and Huntington's disease to RNA and DNA-binding genes. We classify these genes into seven groups according to phenotype and identify those that affect cell migration. We further characterize a subset of seven genes, FAM40A, FAM40B, ARC, FMNL3, FNBP3/FBP11, LIMD1 and ZRANB1, each of which has a different effect on cell shape, actin filament distribution and cell migration. Interestingly, in several instances closely related isoforms with a single Drosophila homologue have distinct phenotypes. For example, FAM40B depletion induces cell elongation and tail retraction defects, whereas FAM40A depletion reduces cell spreading.
Our results identify multiple regulators of cell migration and cytoskeletal signalling that are highly conserved between Drosophila and humans, and show that closely related paralogues can have very different functions in these processes.
PMCID: PMC3201212  PMID: 21834987
14.  Inferring signalling networks from longitudinal data using sampling based approaches in the R-package 'ddepn' 
BMC Bioinformatics  2011;12:291.
Network inference from high-throughput data has become an important means of current analysis of biological systems. For instance, in cancer research, the functional relationships of cancer related proteins, summarised into signalling networks are of central interest for the identification of pathways that influence tumour development. Cancer cell lines can be used as model systems to study the cellular response to drug treatments in a time-resolved way. Based on these kind of data, modelling approaches for the signalling relationships are needed, that allow to generate hypotheses on potential interference points in the networks.
We present the R-package 'ddepn' that implements our recent approach on network reconstruction from longitudinal data generated after external perturbation of network components. We extend our approach by two novel methods: a Markov Chain Monte Carlo method for sampling network structures with two edge types (activation and inhibition) and an extension of a prior model that penalises deviances from a given reference network while incorporating these two types of edges. Further, as alternative prior we include a model that learns signalling networks with the scale-free property.
The package 'ddepn' is freely available on R-Forge and CRAN, It allows to conveniently perform network inference from longitudinal high-throughput data using two different sampling based network structure search algorithms.
PMCID: PMC3146886  PMID: 21771315
15.  Time-Resolved Human Kinome RNAi Screen Identifies a Network Regulating Mitotic-Events as Early Regulators of Cell Proliferation 
PLoS ONE  2011;6(7):e22176.
Analysis of biological processes is frequently performed with the help of phenotypic assays where data is mostly acquired in single end-point analysis. Alternative phenotypic profiling techniques are desired where time-series information is essential to the biological question, for instance to differentiate early and late regulators of cell proliferation in loss-of-function studies. So far there is no study addressing this question despite of high unmet interests, mostly due to the limitation of conventional end-point assaying technologies. We present the first human kinome screen with a real-time cell analysis system (RTCA) to capture dynamic RNAi phenotypes, employing time-resolved monitoring of cell proliferation via electrical impedance. RTCA allowed us to investigate the dynamics of phenotypes of cell proliferation instead of using conventional end-point analysis. By introducing data transformation with first-order derivative, i.e. the cell-index growth rate, we demonstrate this system suitable for high-throughput screenings (HTS). The screen validated previously identified inhibitor genes and, additionally, identified activators of cell proliferation. With the information of time kinetics available, we could establish a network of mitotic-event related genes to be among the first displaying inhibiting effects after RNAi knockdown. The time-resolved screen captured kinetics of cell proliferation caused by RNAi targeting human kinome, serving as a resource for researchers. Our work establishes RTCA technology as a novel robust tool with biological and pharmacological relevance amenable for high-throughput screening.
PMCID: PMC3135613  PMID: 21765947
16.  RNAi-based validation of antibodies for reverse phase protein arrays 
Proteome Science  2010;8:69.
Reverse phase protein arrays (RPPA) have been demonstrated to be a useful experimental platform for quantitative protein profiling in a high-throughput format. Target protein detection relies on the readout obtained from a single detection antibody. For this reason, antibody specificity is a key factor for RPPA. RNAi allows the specific knockdown of a target protein in complex samples and was therefore examined for its utility to assess antibody performance for RPPA applications.
To proof the feasibility of our strategy, two different anti-EGFR antibodies were compared by RPPA. Both detected the knockdown of EGFR but at a different rate. Western blot data were used to identify the most reliable antibody. The RNAi approach was also used to characterize commercial anti-STAT3 antibodies. Out of ten tested anti-STAT3 antibodies, four antibodies detected the STAT3-knockdown at 80-85%, and the most sensitive anti-STAT3 antibody was identified by comparing detection limits. Thus, the use of RNAi for RPPA antibody validation was demonstrated to be a stringent approach to identify highly specific and highly sensitive antibodies. Furthermore, the RNAi/RPPA strategy is also useful for the validation of isoform-specific antibodies as shown for the identification of AKT1/AKT2 and CCND1/CCND3-specific antibodies.
RNAi is a valuable tool for the identification of very specific and highly sensitive antibodies, and is therefore especially useful for the validation of RPPA-suitable detection antibodies. On the other hand, when a set of well-characterized RPPA-antibodies is available, large-scale RNAi experiments analyzed by RPPA might deliver useful information for network reconstruction.
PMCID: PMC3022873  PMID: 21182776
17.  Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data 
Bioinformatics  2010;26(18):i596-i602.
Motivation: Network modelling in systems biology has become an important tool to study molecular interactions in cancer research, because understanding the interplay of proteins is necessary for developing novel drugs and therapies. De novo reconstruction of signalling pathways from data allows to unravel interactions between proteins and make qualitative statements on possible aberrations of the cellular regulatory program. We present a new method for reconstructing signalling networks from time course experiments after external perturbation and show an application of the method to data measuring abundance of phosphorylated proteins in a human breast cancer cell line, generated on reverse phase protein arrays.
Results: Signalling dynamics is modelled using active and passive states for each protein at each timepoint. A fixed signal propagation scheme generates a set of possible state transitions on a discrete timescale for a given network hypothesis, reducing the number of theoretically reachable states. A likelihood score is proposed, describing the probability of measurements given the states of the proteins over time. The optimal sequence of state transitions is found via a hidden Markov model and network structure search is performed using a genetic algorithm that optimizes the overall likelihood of a population of candidate networks. Our method shows increased performance compared with two different dynamical Bayesian network approaches. For our real data, we were able to find several known signalling cascades from the ERBB signalling pathway.
Availability: Dynamic deterministic effects propagation networks is implemented in the R programming language and available at
PMCID: PMC2935402  PMID: 20823327
18.  Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification 
Proteome Science  2010;8:36.
Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level.
A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins.
Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range.
PMCID: PMC2908584  PMID: 20569466
19.  Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project 
Nature biotechnology  2008;26(8):889-896.
The Minimum Information for Biological and Biomedical Investigations (MIBBI) project provides a resource for those exploring the range of extant minimum information checklists and fosters coordinated development of such checklists.
PMCID: PMC2771753  PMID: 18688244
20.  Integrating systems biology with clinical research 
Genome Biology  2008;9(7):314.
A report on the conference 'Systems Genomics 2008', Heidelberg, Germany, 2-3 May 2008.
A report on the conference 'Systems Genomics 2008', Heidelberg, Germany, 2-3 May 2008.
PMCID: PMC2530878  PMID: 18598389
21.  KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor 
Bioinformatics  2009;25(11):1470-1471.
Motivation: KEGG PATHWAY is a service of Kyoto Encyclopedia of Genes and Genomes (KEGG), constructing manually curated pathway maps that represent current knowledge on biological networks in graph models. While valuable graph tools have been implemented in R/Bioconductor, to our knowledge there is currently no software package to parse and analyze KEGG pathways with graph theory.
Results: We introduce the software package KEGGgraph in R and Bioconductor, an interface between KEGG pathways and graph models as well as a collection of tools for these graphs. Superior to existing approaches, KEGGgraph captures the pathway topology and allows further analysis or dissection of pathway graphs. We demonstrate the use of the package by the case study of analyzing human pancreatic cancer pathway.
Availability:KEGGgraph is freely available at the Bioconductor web site ( KGML files can be downloaded from KEGG FTP site (
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2682514  PMID: 19307239
22.  Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance 
In breast cancer, overexpression of the transmembrane tyrosine kinase ERBB2 is an adverse prognostic marker, and occurs in almost 30% of the patients. For therapeutic intervention, ERBB2 is targeted by monoclonal antibody trastuzumab in adjuvant settings; however, de novo resistance to this antibody is still a serious issue, requiring the identification of additional targets to overcome resistance. In this study, we have combined computational simulations, experimental testing of simulation results, and finally reverse engineering of a protein interaction network to define potential therapeutic strategies for de novo trastuzumab resistant breast cancer.
First, we employed Boolean logic to model regulatory interactions and simulated single and multiple protein loss-of-functions. Then, our simulation results were tested experimentally by producing single and double knockdowns of the network components and measuring their effects on G1/S transition during cell cycle progression. Combinatorial targeting of ERBB2 and EGFR did not affect the response to trastuzumab in de novo resistant cells, which might be due to decoupling of receptor activation and cell cycle progression. Furthermore, examination of c-MYC in resistant as well as in sensitive cell lines, using a specific chemical inhibitor of c-MYC (alone or in combination with trastuzumab), demonstrated that both trastuzumab sensitive and resistant cells responded to c-MYC perturbation.
In this study, we connected ERBB signaling with G1/S transition of the cell cycle via two major cell signaling pathways and two key transcription factors, to model an interaction network that allows for the identification of novel targets in the treatment of trastuzumab resistant breast cancer. Applying this new strategy, we found that, in contrast to trastuzumab sensitive breast cancer cells, combinatorial targeting of ERBB receptors or of key signaling intermediates does not have potential for treatment of de novo trastuzumab resistant cells. Instead, c-MYC was identified as a novel potential target protein in breast cancer cells.
PMCID: PMC2652436  PMID: 19118495
23.  Automated production of recombinant human proteins as resource for proteome research 
Proteome Science  2008;6:4.
An arbitrary set of 96 human proteins was selected and tested to set-up a fully automated protein production strategy, covering all steps from DNA preparation to protein purification and analysis. The target proteins are encoded by functionally uncharacterized open reading frames (ORF) identified by the German cDNA consortium. Fusion proteins were produced in E. coli with four different fusion tags and tested in five different purification strategies depending on the respective fusion tag. The automated strategy relies on standard liquid handling and clone picking equipment.
A robust automated strategy for the production of recombinant human proteins in E. coli was established based on a set of four different protein expression vectors resulting in NusA/His, MBP/His, GST and His-tagged proteins. The yield of soluble fusion protein was correlated with the induction temperature and the respective fusion tag. NusA/His and MBP/His fusion proteins are best expressed at low temperature (25°C), whereas the yield of soluble GST fusion proteins was higher when protein expression was induced at elevated temperature. In contrast, the induction of soluble His-tagged fusion proteins was independent of the temperature. Amylose was not found useful for affinity-purification of MBP/His fusion proteins in a high-throughput setting, and metal chelating chromatography is recommended instead.
Soluble fusion proteins can be produced in E. coli in sufficient qualities and μg/ml culture quantities for downstream applications like microarray-based assays, and studies on protein-protein interactions employing a fully automated protein expression and purification strategy. Future applications might include the optimization of experimental conditions for the large-scale production of soluble recombinant proteins from libraries of open reading frames.
PMCID: PMC2266735  PMID: 18226205
24.  Extending pathways based on gene lists using InterPro domain signatures 
BMC Bioinformatics  2008;9:3.
High-throughput technologies like functional screens and gene expression analysis produce extended lists of candidate genes. Gene-Set Enrichment Analysis is a commonly used and well established technique to test for the statistically significant over-representation of particular pathways. A shortcoming of this method is however, that most genes that are investigated in the experiments have very sparse functional or pathway annotation and therefore cannot be the target of such an analysis. The approach presented here aims to assign lists of genes with limited annotation to previously described functional gene collections or pathways. This works by comparing InterPro domain signatures of the candidate gene lists with domain signatures of gene sets derived from known classifications, e.g. KEGG pathways.
In order to validate our approach, we designed a simulation study. Based on all pathways available in the KEGG database, we create test gene lists by randomly selecting pathway genes, removing these genes from the known pathways and adding variable amounts of noise in the form of genes not annotated to the pathway. We show that we can recover pathway memberships based on the simulated gene lists with high accuracy. We further demonstrate the applicability of our approach on a biological example.
Results based on simulation and data analysis show that domain based pathway enrichment analysis is a very sensitive method to test for enrichment of pathways in sparsely annotated lists of genes. An R based software package domainsignatures, to routinely perform this analysis on the results of high-throughput screening, is available via Bioconductor.
PMCID: PMC2245903  PMID: 18177498
25.  The full-ORF clone resource of the German cDNA Consortium 
BMC Genomics  2007;8:399.
With the completion of the human genome sequence the functional analysis and characterization of the encoded proteins has become the next urging challenge in the post-genome era. The lack of comprehensive ORFeome resources has thus far hampered systematic applications by protein gain-of-function analysis. Gene and ORF coverage with full-length ORF clones thus needs to be extended. In combination with a unique and versatile cloning system, these will provide the tools for genome-wide systematic functional analyses, to achieve a deeper insight into complex biological processes.
Here we describe the generation of a full-ORF clone resource of human genes applying the Gateway cloning technology (Invitrogen). A pipeline for efficient cloning and sequencing was developed and a sample tracking database was implemented to streamline the clone production process targeting more than 2,200 different ORFs. In addition, a robust cloning strategy was established, permitting the simultaneous generation of two clone variants that contain a particular ORF with as well as without a stop codon by the implementation of only one additional working step into the cloning procedure. Up to 92 % of the targeted ORFs were successfully amplified by PCR and more than 93 % of the amplicons successfully cloned.
The German cDNA Consortium ORFeome resource currently consists of more than 3,800 sequence-verified entry clones representing ORFs, cloned with and without stop codon, for about 1,700 different gene loci. 177 splice variants were cloned representing 121 of these genes. The entry clones have been used to generate over 5,000 different expression constructs, providing the basis for functional profiling applications. As a member of the recently formed international ORFeome collaboration we substantially contribute to generating and providing a whole genome human ORFeome collection in a unique cloning system that is made freely available in the community.
PMCID: PMC2213676  PMID: 17974005

Results 1-25 (39)