Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation 
Journal of Cell Science  2014;127(23):5014-5026.
Protein N-glycosylation is a common post-translational modification that produces a complex array of branched glycan structures. The levels of branching, or antennarity, give rise to differential biological activities for single glycoproteins. However, the precise mechanism controlling the glycan branching and glycosylation network is unknown. Here, we constructed quantitative mathematical models of N-linked glycosylation that predicted new control points for glycan branching. Galactosyltransferase, which acts on N-acetylglucosamine residues, was unexpectedly found to control metabolic flux through the glycosylation pathway and the level of final antennarity of nascent protein produced in the Golgi network. To further investigate the biological consequences of glycan branching in nascent proteins, we glycoengineered a series of mammalian cells overexpressing human chorionic gonadotropin (hCG). We identified a mechanism in which galactosyltransferase 4 isoform regulated N-glycan branching on the nascent protein, subsequently controlling biological activity in an in vivo model of hCG activity. We found that galactosyltransferase 4 is a major control point for glycan branching decisions taken in the Golgi of the cell, which might ultimately control the biological activity of nascent glycoprotein.
PMCID: PMC4248093  PMID: 25271059
Glycosylation; Golgi; branching; Galactosyltransferase; Chorionic gonadotropin; hCG
2.  Human Aldehyde Dehydrogenase Genes: Alternatively-Spliced Transcriptional Variants and Their Suggested Nomenclature 
Pharmacogenetics and Genomics  2009;19(11):893-902.
The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)+-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer’s disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes.
Data-mining methods were used to retrieve all human ALDH sequences. Alternatively-spliced transcriptional variants were determined based upon: a) criteria for sequence integrity and genomic alignment; b) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and c) if available, empirical evidence of variants from the literature.
Alternatively-spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. In order to avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database ( has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily.
PMCID: PMC3356695  PMID: 19823103
Aldehyde Dehydrogenase; ALDH; Alternatively-Spliced Variants; Nomenclature; Human
4.  GlycoForm and Glycologue: two software applications for the rapid construction and display of N-glycans from mammalian sources 
BMC Research Notes  2010;3:173.
The display of N-glycan carbohydrate structures is an essential part of glycoinformatics. Several tools exist for building such structures graphically, by selecting from a palette of symbols or sugar names, or else by specifying a structure in one of the chemical naming schemes currently available.
In the present work we present two tools for displaying N-glycans found in the mammalian CHO (Chinese hamster ovary) cell line, both of which take as input a 9-digit identifier that uniquely defines each structure. The first of these, GlycoForm, is designed to display a single structure automatically from an identifier entered by the user. The display is updated in real time, using symbols for the sugar residues, or in text-only form. Structures can be added to a library, which is recorded in a preference file and loaded automatically at start. Individual structures can be saved in a variety of bitmap image formats. The second program, Glycologue, reads a file containing columnar data of nine-digit codes, which can be displayed on-screen and printed at high resolution.
A key advantage of both programs is the speed and facility with which carbohydrate structures can be drawn. It is anticipated that these programs will be useful to glycobiologists, systems biologists and biotechnologists interested in N-glycosylation systems in mammalian cells.
PMCID: PMC2904795  PMID: 20565879
5.  Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project 
Nature biotechnology  2008;26(8):889-896.
The Minimum Information for Biological and Biomedical Investigations (MIBBI) project provides a resource for those exploring the range of extant minimum information checklists and fosters coordinated development of such checklists.
PMCID: PMC2771753  PMID: 18688244
6.  ExplorEnz: the primary source of the IUBMB enzyme list 
Nucleic Acids Research  2008;37(Database issue):D593-D597.
ExplorEnz is the MySQL database that is used for the curation and dissemination of the International Union of Biochemistry and Molecular Biology (IUBMB) Enzyme Nomenclature. A simple web-based query interface is provided, along with an advanced search engine for more complex Boolean queries. The WWW front-end is accessible at, from where downloads of the database as SQL and XML are also available. An associated form-based curatorial application has been developed to facilitate the curation of enzyme data as well as the internal and public review processes that occur before an enzyme entry is made official. Suggestions for new enzyme entries, or modifications to existing ones, can be made using the forms provided at
PMCID: PMC2686581  PMID: 18776214
7.  Functional Group and Substructure Searching as a Tool in Metabolomics 
PLoS ONE  2008;3(2):e1537.
A direct link between the names and structures of compounds and the functional groups contained within them is important, not only because biochemists frequently rely on literature that uses a free-text format to describe functional groups, but also because metabolic models depend upon the connections between enzymes and substrates being known and appropriately stored in databases.
We have developed a database named “Biochemical Substructure Search Catalogue” (BiSSCat), which contains 489 functional groups, >200,000 compounds and >1,000,000 different computationally constructed substructures, to allow identification of chemical compounds of biological interest.
This database and its associated web-based search program ( can be used to find compounds containing selected combinations of substructures and functional groups. It can be used to determine possible additional substrates for known enzymes and for putative enzymes found in genome projects. Its applications to enzyme inhibitor design are also discussed.
PMCID: PMC2212108  PMID: 18253485
8.  ExplorEnz: a MySQL database of the IUBMB enzyme nomenclature 
BMC Biochemistry  2007;8:14.
We describe the database ExplorEnz, which is the primary repository for EC numbers and enzyme data that are being curated on behalf of the IUBMB. The enzyme nomenclature is incorporated into many other resources, including the ExPASy-ENZYME, BRENDA and KEGG bioinformatics databases.
The data, which are stored in a MySQL database, preserve the formatting of chemical and enzyme names. A simple, easy to use, web-based query interface is provided, along with an advanced search engine for more complex queries. The database is publicly available at . The data are available for download as SQL and XML files via FTP.
ExplorEnz has powerful and flexible search capabilities and provides the scientific community with the most up-to-date version of the IUBMB Enzyme List.
PMCID: PMC1978204  PMID: 17662133
9.  IntEnz, the integrated relational enzyme database 
Nucleic Acids Research  2004;32(Database issue):D434-D437.
IntEnz is the name for the Integrated relational Enzyme database and is the official version of the Enzyme Nomenclature. The Enzyme Nomenclature comprises recommendations of the Nomenclature Committee of the International Union of Bio chemistry and Molecular Biology (NC-IUBMB) on the nomenclature and classification of enzyme-catalysed reactions. IntEnz is supported by NC-IUBMB and contains enzyme data curated and approved by this committee. The database IntEnz is available at
PMCID: PMC308853  PMID: 14681451

Results 1-9 (9)