PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic 
The ISME Journal  2011;5(7):1201-1212.
Expression of nifH in 28 surface water samples collected during fall 2007 from six stations in the vicinity of the Cape Verde Islands (north-east Atlantic) was examined using reverse transcription-polymerase chain reaction (RT-PCR)-based clone libraries and quantitative RT-PCR (RT-qPCR) analysis of seven diazotrophic phylotypes. Biological nitrogen fixation (BNF) rates and nutrient concentrations were determined for these stations, which were selected based on a range in surface chlorophyll concentrations to target a gradient of primary productivity. BNF rates greater than 6 nmolN l−1 h−1 were measured at two of the near-shore stations where high concentrations of Fe and PO43− were also measured. Six hundred and five nifH transcripts were amplified by RT-PCR, of which 76% are described by six operational taxonomic units, including Trichodesmium and the uncultivated UCYN-A, and four non-cyanobacterial diazotrophs that clustered with uncultivated Proteobacteria. Although all five cyanobacterial phylotypes quantified in RT-qPCR assays were detected at different stations in this study, UCYN-A contributed most significantly to the pool of nifH transcripts in both coastal and oligotrophic waters. A comparison of results from RT-PCR clone libraries and RT-qPCR indicated that a γ-proteobacterial phylotype was preferentially amplified in clone libraries, which underscores the need to use caution interpreting clone-library-based nifH studies, especially when considering the importance of uncultivated proteobacterial diazotrophs.
doi:10.1038/ismej.2010.205
PMCID: PMC3146282  PMID: 21228888
nitrogen fixation; nifH; nitrogenase; molecular; Cape Verde; Atlantic
2.  The Taxonomic and Functional Diversity of Microbes at a Temperate Coastal Site: A ‘Multi-Omic’ Study of Seasonal and Diel Temporal Variation 
PLoS ONE  2010;5(11):e15545.
How microbial communities change over time in response to the environment is poorly understood. Previously a six-year time series of 16S rRNA V6 data from the Western English Channel demonstrated robust seasonal structure within the bacterial community, with diversity negatively correlated with day-length. Here we determine whether metagenomes and metatranscriptomes follow similar patterns. We generated 16S rRNA datasets, metagenomes (1.2 GB) and metatranscriptomes (157 MB) for eight additional time points sampled in 2008, representing three seasons (Winter, Spring, Summer) and including day and night samples. This is the first microbial ‘multi-omic’ study to combine 16S rRNA amplicon sequencing with metagenomic and metatranscriptomic profiling. Five main conclusions can be drawn from analysis of these data: 1) Archaea follow the same seasonal patterns as Bacteria, but show lower relative diversity; 2) Higher 16S rRNA diversity also reflects a higher diversity of transcripts; 3) Diversity is highest in winter and at night; 4) Community-level changes in 16S-based diversity and metagenomic profiles are better explained by seasonal patterns (with samples closest in time being most similar), while metatranscriptomic profiles are better explained by diel patterns and shifts in particular categories (i.e., functional groups) of genes; 5) Changes in key genes occur among seasons and between day and night (i.e., photosynthesis); but these samples contain large numbers of orphan genes without known homologues and it is these unknown gene sets that appear to contribute most towards defining the differences observed between times. Despite the huge diversity of these microbial communities, there are clear signs of predictable patterns and detectable stability over time. Renewed and intensified efforts are required to reveal fundamental deterministic patterns in the most complex microbial communities. Further, the presence of a substantial proportion of orphan sequences underscores the need to determine the gene products of sequences with currently unknown function.
doi:10.1371/journal.pone.0015545
PMCID: PMC2993967  PMID: 21124740

Results 1-2 (2)