PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  EMAGE mouse embryo spatial gene expression database: 2014 update 
Nucleic Acids Research  2013;42(D1):D835-D844.
EMAGE (http://www.emouseatlas.org/emage/) is a freely available database of in situ gene expression patterns that allows users to perform online queries of mouse developmental gene expression. EMAGE is unique in providing both text-based descriptions of gene expression plus spatial maps of gene expression patterns. This mapping allows spatial queries to be accomplished alongside more traditional text-based queries. Here, we describe our recent progress in spatial mapping and data integration. EMAGE has developed a method of spatially mapping 3D embryo images captured using optical projection tomography, and through the use of an IIP3D viewer allows users to view arbitrary sections of raw and mapped 3D image data in the context of a web browser. EMAGE now includes enhancer data, and we have spatially mapped images from a comprehensive screen of transgenic reporter mice that detail the expression of mouse non-coding genomic DNA fragments with enhancer activity. We have integrated the eMouseAtlas anatomical atlas and the EMAGE database so that a user of the atlas can query the EMAGE database easily. In addition, we have extended the atlas framework to enable EMAGE to spatially cross-index EMBRYS whole mount in situ hybridization data. We additionally report on recent developments to the EMAGE web interface, including new query and analysis capabilities.
doi:10.1093/nar/gkt1155
PMCID: PMC3965061  PMID: 24265223
2.  eMouseAtlas, EMAGE, and the spatial dimension of the transcriptome 
Mammalian Genome  2012;23(9-10):514-524.
eMouseAtlas (www.emouseatlas.org) is a comprehensive online resource to visualise mouse development and investigate gene expression in the mouse embryo. We have recently deployed a completely redesigned Mouse Anatomy Atlas website (www.emouseatlas.org/emap/ema) that allows users to view 3D embryo reconstructions, delineated anatomy, and high-resolution histological sections. A new feature of the website is the IIP3D web tool that allows a user to view arbitrary sections of 3D embryo reconstructions using a web browser. This feature provides interactive access to very high-volume 3D images via a tiled pan-and-zoom style interface and circumvents the need to download large image files for visualisation. eMouseAtlas additionally includes EMAGE (Edinburgh Mouse Atlas of Gene Expression) (www.emouseatlas.org/emage), a freely available, curated online database of in situ gene expression patterns, where gene expression domains extracted from raw data images are spatially mapped into atlas embryo models. In this way, EMAGE introduces a spatial dimension to transcriptome data and allows exploration of the spatial similarity between gene expression patterns. New features of the EMAGE interface allow complex queries to be built, and users can view and compare multiple gene expression patterns. EMAGE now includes mapping of 3D gene expression domains captured using the imaging technique optical projection tomography. 3D mapping uses WlzWarp, an open-source software tool developed by eMouseAtlas.
doi:10.1007/s00335-012-9407-1
PMCID: PMC3463796  PMID: 22847374
3.  The BioMart interface to the eMouseAtlas gene expression database EMAGE 
Here, we describe the BioMart interface to the eMouseAtlas gene expression database EMAGE. EMAGE is a spatiotemporal database of in situ gene expression patterns in the developing mouse embryo. BioMart provides a generic web query interface and programmable access using web services. The BioMart interface extends access to EMAGE via a powerful method of structuring complex queries and one with which users may already be familiar with from other BioMart implementations. The interface is structured into several data sets providing the user with comprehensive query access to the EMAGE data. The federated nature of BioMart allows scope for integration and cross querying of EMAGE with other similar BioMarts.
Database URL: http://biomart.emouseatlas.org
doi:10.1093/database/bar029
PMCID: PMC3263595  PMID: 21930504
4.  Towards BioDBcore: a community-defined information specification for biological databases 
The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources; and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases.
doi:10.1093/database/baq027
PMCID: PMC3017395  PMID: 21205783
5.  Towards BioDBcore: a community-defined information specification for biological databases 
Nucleic Acids Research  2010;39(Database issue):D7-D10.
The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases.
doi:10.1093/nar/gkq1173
PMCID: PMC3013734  PMID: 21097465
6.  EMAGE mouse embryo spatial gene expression database: 2010 update 
Nucleic Acids Research  2009;38(Database issue):D703-D709.
EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE.
doi:10.1093/nar/gkp763
PMCID: PMC2808994  PMID: 19767607
7.  EMAGE—Edinburgh Mouse Atlas of Gene Expression: 2008 update 
Nucleic Acids Research  2007;36(Database issue):D860-D865.
EMAGE (http://genex.hgu.mrc.ac.uk/Emage/database) is a database of in situ gene expression patterns in the developing mouse embryo. Domains of expression from raw data images are spatially integrated into a set of standard 3D virtual mouse embryos at different stages of development, allowing data interrogation by spatial methods. Sites of expression are also described using an anatomy ontology and data can be queried using text-based methods. Here we describe recent enhancements to EMAGE which include advances in spatial search methods including: a refined local spatial similarity search algorithm, a method to allow global spatial comparison of patterns in EMAGE and subsequent hierarchical-clustering, and spatial searches across multiple stages of development. In addition, we have extended data access by the introduction of web services and new HTML-based search interfaces, which allow access to data that has not yet been spatially annotated. We have also started incorporating full 3D images of gene expression that have been generated using optical projection tomography (OPT).
doi:10.1093/nar/gkm938
PMCID: PMC2238921  PMID: 18077470
8.  EMAGE: a spatial database of gene expression patterns during mouse embryo development 
Nucleic Acids Research  2005;34(Database issue):D637-D641.
EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods.
doi:10.1093/nar/gkj006
PMCID: PMC1347369  PMID: 16381949

Results 1-8 (8)