Search tips
Search criteria

Results 1-25 (40)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside 
Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR.
Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R’g) was determined radioisotopically with 14C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles.
AICAR did not affect blood glucose, or lower leg R’g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R’g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R’g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R’g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion.
AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.
PMCID: PMC4509722  PMID: 26194188
Muscle; Insulin; Glucose; Microcirculation; Microbubbles
2.  Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions 
Nature Communications  2015;6:7344.
Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the fly's molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.
Lucilia cuprina is a parasitic blowfly of major economic importance worldwide that feeds on the tissues of animals such as sheep. Here, the authors sequence the genome of L. cuprina and provide insights into the fly's molecular biology, interactions with the host animal and insecticide resistance.
PMCID: PMC4491171  PMID: 26108605
3.  A Re-Appraisal of the Early Andean Human Remains from Lauricocha in Peru 
PLoS ONE  2015;10(6):e0127141.
The discovery of human remains from the Lauricocha cave in the Central Andean highlands in the 1960’s provided the first direct evidence for human presence in the high altitude Andes. The skeletons found at this site were ascribed to the Early to Middle Holocene and represented the oldest known population of Western South America, and thus were used in several studies addressing the early population history of the continent. However, later excavations at Lauricocha led to doubts regarding the antiquity of the site. Here, we provide new dating, craniometric, and genetic evidence for this iconic site. We obtained new radiocarbon dates, generated complete mitochondrial genomes and nuclear SNP data from five individuals, and re-analyzed the human remains of Lauricocha to revise the initial morphological and craniometric analysis conducted in the 1960’s. We show that Lauricocha was indeed occupied in the Early to Middle Holocene but the temporal spread of dates we obtained from the human remains show that they do not qualify as a single contemporaneous population. However, the genetic results from five of the individuals fall within the spectrum of genetic diversity observed in pre-Columbian and modern Native Central American populations.
PMCID: PMC4464891  PMID: 26061688
4.  The genomes of two key bumblebee species with primitive eusocial organization 
Sadd, Ben M | Barribeau, Seth M | Bloch, Guy | de Graaf, Dirk C | Dearden, Peter | Elsik, Christine G | Gadau, Jürgen | Grimmelikhuijzen, Cornelis JP | Hasselmann, Martin | Lozier, Jeffrey D | Robertson, Hugh M | Smagghe, Guy | Stolle, Eckart | Van Vaerenbergh, Matthias | Waterhouse, Robert M | Bornberg-Bauer, Erich | Klasberg, Steffen | Bennett, Anna K | Câmara, Francisco | Guigó, Roderic | Hoff, Katharina | Mariotti, Marco | Munoz-Torres, Monica | Murphy, Terence | Santesmasses, Didac | Amdam, Gro V | Beckers, Matthew | Beye, Martin | Biewer, Matthias | Bitondi, Márcia MG | Blaxter, Mark L | Bourke, Andrew FG | Brown, Mark JF | Buechel, Severine D | Cameron, Rossanah | Cappelle, Kaat | Carolan, James C | Christiaens, Olivier | Ciborowski, Kate L | Clarke, David F | Colgan, Thomas J | Collins, David H | Cridge, Andrew G | Dalmay, Tamas | Dreier, Stephanie | du Plessis, Louis | Duncan, Elizabeth | Erler, Silvio | Evans, Jay | Falcon, Tiago | Flores, Kevin | Freitas, Flávia CP | Fuchikawa, Taro | Gempe, Tanja | Hartfelder, Klaus | Hauser, Frank | Helbing, Sophie | Humann, Fernanda C | Irvine, Frano | Jermiin, Lars S | Johnson, Claire E | Johnson, Reed M | Jones, Andrew K | Kadowaki, Tatsuhiko | Kidner, Jonathan H | Koch, Vasco | Köhler, Arian | Kraus, F Bernhard | Lattorff, H Michael G | Leask, Megan | Lockett, Gabrielle A | Mallon, Eamonn B | Antonio, David S Marco | Marxer, Monika | Meeus, Ivan | Moritz, Robin FA | Nair, Ajay | Näpflin, Kathrin | Nissen, Inga | Niu, Jinzhi | Nunes, Francis MF | Oakeshott, John G | Osborne, Amy | Otte, Marianne | Pinheiro, Daniel G | Rossié, Nina | Rueppell, Olav | Santos, Carolina G | Schmid-Hempel, Regula | Schmitt, Björn D | Schulte, Christina | Simões, Zilá LP | Soares, Michelle PM | Swevers, Luc | Winnebeck, Eva C | Wolschin, Florian | Yu, Na | Zdobnov, Evgeny M | Aqrawi, Peshtewani K | Blankenburg, Kerstin P | Coyle, Marcus | Francisco, Liezl | Hernandez, Alvaro G | Holder, Michael | Hudson, Matthew E | Jackson, LaRonda | Jayaseelan, Joy | Joshi, Vandita | Kovar, Christie | Lee, Sandra L | Mata, Robert | Mathew, Tittu | Newsham, Irene F | Ngo, Robin | Okwuonu, Geoffrey | Pham, Christopher | Pu, Ling-Ling | Saada, Nehad | Santibanez, Jireh | Simmons, DeNard | Thornton, Rebecca | Venkat, Aarti | Walden, Kimberly KO | Wu, Yuan-Qing | Debyser, Griet | Devreese, Bart | Asher, Claire | Blommaert, Julie | Chipman, Ariel D | Chittka, Lars | Fouks, Bertrand | Liu, Jisheng | O’Neill, Meaghan P | Sumner, Seirian | Puiu, Daniela | Qu, Jiaxin | Salzberg, Steven L | Scherer, Steven E | Muzny, Donna M | Richards, Stephen | Robinson, Gene E | Gibbs, Richard A | Schmid-Hempel, Paul | Worley, Kim C
Genome Biology  2015;16(1):76.
The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.
We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.
These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-015-0623-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4414376  PMID: 25908251
5.  Parallel Histories of Horizontal Gene Transfer Facilitated Extreme Reduction of Endosymbiont Genomes in Sap-Feeding Insects 
Molecular Biology and Evolution  2014;31(4):857-871.
Bacteria confined to intracellular environments experience extensive genome reduction. In extreme cases, insect endosymbionts have evolved genomes that are so gene-poor that they blur the distinction between bacteria and endosymbiotically derived organelles such as mitochondria and plastids. To understand the host’s role in this extreme gene loss, we analyzed gene content and expression in the nuclear genome of the psyllid Pachypsylla venusta, a sap-feeding insect that harbors an ancient endosymbiont (Carsonella) with one of the most reduced bacterial genomes ever identified. Carsonella retains many genes required for synthesis of essential amino acids that are scarce in plant sap, but most of these biosynthetic pathways have been disrupted by gene loss. Host genes that are upregulated in psyllid cells housing Carsonella appear to compensate for endosymbiont gene losses, resulting in highly integrated metabolic pathways that mirror those observed in other sap-feeding insects. The host contribution to these pathways is mediated by a combination of native eukaryotic genes and bacterial genes that were horizontally transferred from multiple donor lineages early in the evolution of psyllids, including one gene that appears to have been directly acquired from Carsonella. By comparing the psyllid genome to a recent analysis of mealybugs, we found that a remarkably similar set of functional pathways have been shaped by independent transfers of bacterial genes to the two hosts. These results show that horizontal gene transfer is an important and recurring mechanism driving coevolution between insects and their bacterial endosymbionts and highlight interesting similarities and contrasts with the evolutionary history of mitochondria and plastids.
PMCID: PMC3969561  PMID: 24398322
amino acid biosynthesis; endosymbionts; lateral gene transfer; Pachypsylla venusta; psyllids
6.  AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome 
Insect molecular biology  2010;19(0 2):5-12.
AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at
PMCID: PMC4372297  PMID: 20482635
7.  A full-length cDNA resource for the pea aphid, Acyrthosiphon pisum 
Insect molecular biology  2010;19(0 2):23-31.
Large collections of full-length cDNAs are important resources for genome annotation and functional genomics. We report the creation of a collection of 50,599 full-length cDNA clones from the pea aphid, Acyrthosiphon pisum. Sequencing from 5’ and 3’ ends of the clones generated 97,828 high-quality expressed sequence tags (ESTs), representing approximately 9,000 genes. These sequences were imported to AphidBase and are shown to play crucial roles in both automatic gene prediction and manual annotation. Our detailed analyses demonstrated that the full-length cDNAs can further improve gene models and can even identify novel genes that are not included in the current version of the official gene set. This full-length cDNA collection can be utilized for a wide variety of functional studies, serving as a community resource for the study of the functional genomics of the pea aphid.
PMCID: PMC4370113  PMID: 20482637
full-length cDNA; aphid; functional genomics; EST analysis
8.  The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima 
Chipman, Ariel D. | Ferrier, David E. K. | Brena, Carlo | Qu, Jiaxin | Hughes, Daniel S. T. | Schröder, Reinhard | Torres-Oliva, Montserrat | Znassi, Nadia | Jiang, Huaiyang | Almeida, Francisca C. | Alonso, Claudio R. | Apostolou, Zivkos | Aqrawi, Peshtewani | Arthur, Wallace | Barna, Jennifer C. J. | Blankenburg, Kerstin P. | Brites, Daniela | Capella-Gutiérrez, Salvador | Coyle, Marcus | Dearden, Peter K. | Du Pasquier, Louis | Duncan, Elizabeth J. | Ebert, Dieter | Eibner, Cornelius | Erikson, Galina | Evans, Peter D. | Extavour, Cassandra G. | Francisco, Liezl | Gabaldón, Toni | Gillis, William J. | Goodwin-Horn, Elizabeth A. | Green, Jack E. | Griffiths-Jones, Sam | Grimmelikhuijzen, Cornelis J. P. | Gubbala, Sai | Guigó, Roderic | Han, Yi | Hauser, Frank | Havlak, Paul | Hayden, Luke | Helbing, Sophie | Holder, Michael | Hui, Jerome H. L. | Hunn, Julia P. | Hunnekuhl, Vera S. | Jackson, LaRonda | Javaid, Mehwish | Jhangiani, Shalini N. | Jiggins, Francis M. | Jones, Tamsin E. | Kaiser, Tobias S. | Kalra, Divya | Kenny, Nathan J. | Korchina, Viktoriya | Kovar, Christie L. | Kraus, F. Bernhard | Lapraz, François | Lee, Sandra L. | Lv, Jie | Mandapat, Christigale | Manning, Gerard | Mariotti, Marco | Mata, Robert | Mathew, Tittu | Neumann, Tobias | Newsham, Irene | Ngo, Dinh N. | Ninova, Maria | Okwuonu, Geoffrey | Ongeri, Fiona | Palmer, William J. | Patil, Shobha | Patraquim, Pedro | Pham, Christopher | Pu, Ling-Ling | Putman, Nicholas H. | Rabouille, Catherine | Ramos, Olivia Mendivil | Rhodes, Adelaide C. | Robertson, Helen E. | Robertson, Hugh M. | Ronshaugen, Matthew | Rozas, Julio | Saada, Nehad | Sánchez-Gracia, Alejandro | Scherer, Steven E. | Schurko, Andrew M. | Siggens, Kenneth W. | Simmons, DeNard | Stief, Anna | Stolle, Eckart | Telford, Maximilian J. | Tessmar-Raible, Kristin | Thornton, Rebecca | van der Zee, Maurijn | von Haeseler, Arndt | Williams, James M. | Willis, Judith H. | Wu, Yuanqing | Zou, Xiaoyan | Lawson, Daniel | Muzny, Donna M. | Worley, Kim C. | Gibbs, Richard A. | Akam, Michael | Richards, Stephen
PLoS Biology  2014;12(11):e1002005.
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.
Author Summary
Arthropods are the most abundant animals on earth. Among them, insects clearly dominate on land, whereas crustaceans hold the title for the most diverse invertebrates in the oceans. Much is known about the biology of these groups, not least because of genomic studies of the fruit fly Drosophila, the water flea Daphnia, and other species used in research. Here we report the first genome sequence from a species belonging to a lineage that has previously received very little attention—the myriapods. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes, one of which—Strigamia maritima—we have sequenced here. We find that the genome of this centipede retains more characteristics of the presumed arthropod ancestor than other sequenced insect genomes. The genome provides access to many aspects of myriapod biology that have not been studied before, suggesting, for example, that they have diversified receptors for smell that are quite different from those used by insects. In addition, it shows specific consequences of the largely subterranean life of this particular species, which seems to have lost the genes for all known light-sensing molecules, even though it still avoids light.
PMCID: PMC4244043  PMID: 25423365
9.  Evidence for Stabilizing Selection on Codon Usage in Chromosomal Rearrangements of Drosophila pseudoobscura 
G3: Genes|Genomes|Genetics  2014;4(12):2433-2449.
There has been a renewed interest in investigating the role of stabilizing selection acting on genome-wide traits such as codon usage bias. Codon bias, when synonymous codons are used at unequal frequencies, occurs in a wide variety of taxa. Standard evolutionary models explain the maintenance of codon bias through a balance of genetic drift, mutation and weak purifying selection. The efficacy of selection is expected to be reduced in regions of suppressed recombination. Contrary to observations in Drosophila melanogaster, some recent studies have failed to detect a relationship between the recombination rate, intensity of selection acting at synonymous sites, and the magnitude of codon bias as predicted under these standard models. Here, we examined codon bias in 2798 protein coding loci on the third chromosome of D. pseudoobscura using whole-genome sequences of 47 individuals, representing five common third chromosome gene arrangements. Fine-scale recombination maps were constructed using more than 1 million segregating sites. As expected, recombination was demonstrated to be significantly suppressed between chromosome arrangements, allowing for a direct examination of the relationship between recombination, selection, and codon bias. As with other Drosophila species, we observe a strong mutational bias away from the most frequently used codons. We find the rate of synonymous and nonsynonymous polymorphism is variable between different amino acids. However, we do not observe a reduction in codon bias or the strength of selection in regions of suppressed recombination as expected. Instead, we find that the interaction between weak stabilizing selection and mutational bias likely plays a role in shaping the composition of synonymous codons across the third chromosome in D. pseudoobscura.
PMCID: PMC4267939  PMID: 25326424
codon bias; stabilizing selection; chromosomal inversions; recombination
10.  Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans 
Nature communications  2013;4:1764.
Haplogroup (hg) H dominates present-day Western European mitochondrial (mt) DNA variability (>40%), yet was less common (~19%) amongst Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete hg H mitochondrial genomes from ancient human remains. We then compare this ‘real-time’ genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of hg H were largely established by the Mid-Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated hg H genomes allow us to reconstruct the recent evolutionary history of hg H and reveal a mutation rate 45% higher than current estimates for human mitochondria.
PMCID: PMC3978205  PMID: 23612305
11.  Microvascular Contributions to Insulin Resistance 
Diabetes  2013;62(2):343-345.
PMCID: PMC3554389  PMID: 23349541
12.  Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface 
JAMA ophthalmology  2013;131(6):10.1001/jamaophthalmol.2013.2385.
Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear.
To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage.
Design, Setting, and Participants
Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage.
Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions.
Conclusions and Relevance
Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage.
PMCID: PMC3887468  PMID: 23599181
13.  Influence of Aromatase Absence on the Gene Expression and Histology of the Mouse Meibomian Gland 
We hypothesize that aromatase, an enzyme that controls estrogen biosynthesis, plays a major role in the sex-related differences of the meibomian gland. To begin to test this hypothesis, we examined the influence of aromatase absence, which completely eliminates estrogen production, on glandular gene expression and histology in male and female mice.
Meibomian glands were obtained from adult, age-matched wild-type (WT) and aromatase knockout (ArKO) mice. Tissues were processed for histology or the isolation of total RNA, which was analyzed for differentially expressed mRNAs by using microarrays.
Our results show that aromatase significantly influences the expression of more than a thousand genes in the meibomian gland. The nature of this effect is primarily sex-dependent. In addition, the influence of aromatase on sex-related differences in gene expression is predominantly genotype-specific. However, many of the sex-related variations in biological process, molecular function, and cellular component ontologies, as well as in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, are remarkably similar between WT and ArKO mice. The loss of aromatase activity has no obvious effect on the histology of meibomian glands in male or female mice.
Our findings demonstrate that aromatase has a significant impact on gene expression in the meibomian gland. The nature of this influence is sex-dependent and genotype-specific; however, many of the sex-related variations in gene ontologies and KEGG pathways are similar between WT and ArKO mice. Consequently, it appears that aromatase, and by extension estrogen, do not play a major role in the sex-related differences of the mouse meibomian gland.
Aromatase exerts a significant sex- and genotype-specific effect on meibomian gland gene expression. However, this enzyme, and by extension estrogen, do not play a major role in the sex-related differences in this tissue.
PMCID: PMC3565996  PMID: 23233261
14.  Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species 
Bradnam, Keith R | Fass, Joseph N | Alexandrov, Anton | Baranay, Paul | Bechner, Michael | Birol, Inanç | Boisvert, Sébastien | Chapman, Jarrod A | Chapuis, Guillaume | Chikhi, Rayan | Chitsaz, Hamidreza | Chou, Wen-Chi | Corbeil, Jacques | Del Fabbro, Cristian | Docking, T Roderick | Durbin, Richard | Earl, Dent | Emrich, Scott | Fedotov, Pavel | Fonseca, Nuno A | Ganapathy, Ganeshkumar | Gibbs, Richard A | Gnerre, Sante | Godzaridis, Élénie | Goldstein, Steve | Haimel, Matthias | Hall, Giles | Haussler, David | Hiatt, Joseph B | Ho, Isaac Y | Howard, Jason | Hunt, Martin | Jackman, Shaun D | Jaffe, David B | Jarvis, Erich D | Jiang, Huaiyang | Kazakov, Sergey | Kersey, Paul J | Kitzman, Jacob O | Knight, James R | Koren, Sergey | Lam, Tak-Wah | Lavenier, Dominique | Laviolette, François | Li, Yingrui | Li, Zhenyu | Liu, Binghang | Liu, Yue | Luo, Ruibang | MacCallum, Iain | MacManes, Matthew D | Maillet, Nicolas | Melnikov, Sergey | Naquin, Delphine | Ning, Zemin | Otto, Thomas D | Paten, Benedict | Paulo, Octávio S | Phillippy, Adam M | Pina-Martins, Francisco | Place, Michael | Przybylski, Dariusz | Qin, Xiang | Qu, Carson | Ribeiro, Filipe J | Richards, Stephen | Rokhsar, Daniel S | Ruby, J Graham | Scalabrin, Simone | Schatz, Michael C | Schwartz, David C | Sergushichev, Alexey | Sharpe, Ted | Shaw, Timothy I | Shendure, Jay | Shi, Yujian | Simpson, Jared T | Song, Henry | Tsarev, Fedor | Vezzi, Francesco | Vicedomini, Riccardo | Vieira, Bruno M | Wang, Jun | Worley, Kim C | Yin, Shuangye | Yiu, Siu-Ming | Yuan, Jianying | Zhang, Guojie | Zhang, Hao | Zhou, Shiguo | Korf, Ian F
GigaScience  2013;2:10.
The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.
In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.
Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.
PMCID: PMC3844414  PMID: 23870653
Genome assembly; N50; Scaffolds; Assessment; Heterozygosity; COMPASS
15.  The Drosophila melanogaster Genetic Reference Panel 
Nature  2012;482(7384):173-178.
A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.
PMCID: PMC3683990  PMID: 22318601
16.  Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor 
BMC Genomics  2013;14:187.
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a destructive pest of wheat and model organism for studying gall midge biology and insect – host plant interactions.
In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. A genome-wide search through a draft Hessian fly genome sequence identified a total of 611 putative miRNA-encoding genes based on sequence similarity and the existence of a stem-loop structure for miRNA precursors. Analysis of the 611 putative genes revealed a striking feature: the dramatic expansion of several miRNA gene families. The largest family contained 91 genes that encoded 20 different miRNAs. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes.
The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior. The dramatic expansion of identical or similar miRNAs provides a unique system to study functional relations among miRNA iso-genes as well as changes in sequence specificity due to small changes in miRNAs and in their mRNA targets. These results may also facilitate the identification of miRNA genes for potential pest control through transgenic approaches.
PMCID: PMC3608969  PMID: 23496979
17.  Fine-Scale Mapping of the Nasonia Genome to Chromosomes Using a High-Density Genotyping Microarray 
G3: Genes|Genomes|Genetics  2013;3(2):205-215.
Nasonia, a genus of four closely related parasitoid insect species, is a model system for genetic research. Their haplodiploid genetics (haploid males and diploid females) and interfertile species are advantageous for the genetic analysis of complex traits and the genetic basis of species differences. A fine-scale genomic map is an important tool for advancing genetic studies in this system. We developed and used a hybrid genotyping microarray to generate a high-resolution genetic map that covers 79% of the sequenced genome of Nasonia vitripennis. The microarray is based on differential hybridization of species-specific oligos between N. vitripennis and Nasonia giraulti at more than 20,000 markers spanning the Nasonia genome. The map places 729 scaffolds onto the five linkage groups of Nasonia, including locating many smaller scaffolds that would be difficult to map by other means. The microarray was used to characterize 26 segmental introgression lines containing chromosomal regions from one species in the genetic background of another. These segmental introgression lines have been used for rapid screening and mapping of quantitative trait loci involved in species differences. Finally, the microarray is extended to bulk-segregant analysis and genotyping of other Nasonia species combinations. These resources should further expand the usefulness of Nasonia for studies of the genetic basis and architecture of complex traits and speciation.
PMCID: PMC3564981  PMID: 23390597
18.  Butterfly genome reveals promiscuous exchange of mimicry adaptations among species 
Dasmahapatra, Kanchon K | Walters, James R. | Briscoe, Adriana D. | Davey, John W. | Whibley, Annabel | Nadeau, Nicola J. | Zimin, Aleksey V. | Hughes, Daniel S. T. | Ferguson, Laura C. | Martin, Simon H. | Salazar, Camilo | Lewis, James J. | Adler, Sebastian | Ahn, Seung-Joon | Baker, Dean A. | Baxter, Simon W. | Chamberlain, Nicola L. | Chauhan, Ritika | Counterman, Brian A. | Dalmay, Tamas | Gilbert, Lawrence E. | Gordon, Karl | Heckel, David G. | Hines, Heather M. | Hoff, Katharina J. | Holland, Peter W.H. | Jacquin-Joly, Emmanuelle | Jiggins, Francis M. | Jones, Robert T. | Kapan, Durrell D. | Kersey, Paul | Lamas, Gerardo | Lawson, Daniel | Mapleson, Daniel | Maroja, Luana S. | Martin, Arnaud | Moxon, Simon | Palmer, William J. | Papa, Riccardo | Papanicolaou, Alexie | Pauchet, Yannick | Ray, David A. | Rosser, Neil | Salzberg, Steven L. | Supple, Megan A. | Surridge, Alison | Tenger-Trolander, Ayse | Vogel, Heiko | Wilkinson, Paul A. | Wilson, Derek | Yorke, James A. | Yuan, Furong | Balmuth, Alexi L. | Eland, Cathlene | Gharbi, Karim | Thomson, Marian | Gibbs, Richard A. | Han, Yi | Jayaseelan, Joy C. | Kovar, Christie | Mathew, Tittu | Muzny, Donna M. | Ongeri, Fiona | Pu, Ling-Ling | Qu, Jiaxin | Thornton, Rebecca L. | Worley, Kim C. | Wu, Yuan-Qing | Linares, Mauricio | Blaxter, Mark L. | Constant, Richard H. ffrench | Joron, Mathieu | Kronforst, Marcus R. | Mullen, Sean P. | Reed, Robert D. | Scherer, Steven E. | Richards, Stephen | Mallet, James | McMillan, W. Owen | Jiggins, Chris D.
Nature  2012;487(7405):94-98.
The evolutionary importance of hybridization and introgression has long been debated1. We used genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation2-5 . We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,657 predicted genes for Heliconius, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organisation has remained broadly conserved since the Cretaceous, when butterflies split from the silkmoth lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, H. melpomene, H. timareta, and H. elevatus, especially at two genomic regions that control mimicry pattern. Closely related Heliconius species clearly exchange protective colour pattern genes promiscuously, implying a major role for hybridization in adaptive radiation.
PMCID: PMC3398145  PMID: 22722851
19.  Molecular phylogeny of microhylid frogs (Anura: Microhylidae) with emphasis on relationships among New World genera 
Over the last ten years we have seen great efforts focused on revising amphibian systematics. Phylogenetic reconstructions derived from DNA sequence data have played a central role in these revisionary studies but have typically under-sampled the diverse frog family Microhylidae. Here, we present a detailed phylogenetic study focused on expanding previous hypotheses of relationships within this cosmopolitan family. Specifically, we placed an emphasis on assessing relationships among New World genera and those taxa with uncertain phylogenetic affinities (i.e., incertae sedis).
One mitochondrial and three nuclear genes (about 2.8 kb) were sequenced to assess phylogenetic relationships. We utilized an unprecedented sampling of 200 microhylid taxa representing 91% of currently recognized subfamilies and 95% of New World genera. Our analyses do not fully resolve relationships among subfamilies supporting previous studies that have suggested a rapid early diversification of this clade. We observed a close relationship between Synapturanus and Otophryne of the subfamily Otophryninae. Within the subfamily Gastrophryninae relationships between genera were well resolved.
Otophryninae is distantly related to all other New World microhylids that were recovered as a monophyletic group, Gastrophryninae. Within Gastrophryninae, five genera were recovered as non-monophyletic; we propose taxonomic re-arrangements to render all genera monophyletic. This hypothesis of relationships and updated classification for New World microhylids may serve as a guide to better understand the evolutionary history of this group that is apparently subject to convergent morphological evolution and chromosome reduction. Based on a divergence analysis calibrated with hypotheses from previous studies and fossil data, it appears that microhylid genera inhabiting the New World originated during a period of gradual cooling from the late Oligocene to mid Miocene.
PMCID: PMC3561245  PMID: 23228209
Microhylidae; Phylogeny; Systematics; Subfamilies; New World genera
20.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology 
PLoS ONE  2012;7(11):e47768.
Many genomes have been sequenced to high-quality draft status using Sanger capillary electrophoresis and/or newer short-read sequence data and whole genome assembly techniques. However, even the best draft genomes contain gaps and other imperfections due to limitations in the input data and the techniques used to build draft assemblies. Sequencing biases, repetitive genomic features, genomic polymorphism, and other complicating factors all come together to make some regions difficult or impossible to assemble. Traditionally, draft genomes were upgraded to “phase 3 finished” status using time-consuming and expensive Sanger-based manual finishing processes. For more facile assembly and automated finishing of draft genomes, we present here an automated approach to finishing using long-reads from the Pacific Biosciences RS (PacBio) platform. Our algorithm and associated software tool, PBJelly, (publicly available at automates the finishing process using long sequence reads in a reference-guided assembly process. PBJelly also provides “lift-over” co-ordinate tables to easily port existing annotations to the upgraded assembly. Using PBJelly and long PacBio reads, we upgraded the draft genome sequences of a simulated Drosophila melanogaster, the version 2 draft Drosophila pseudoobscura, an assembly of the Assemblathon 2.0 budgerigar dataset, and a preliminary assembly of the Sooty mangabey. With 24× mapped coverage of PacBio long-reads, we addressed 99% of gaps and were able to close 69% and improve 12% of all gaps in D. pseudoobscura. With 4× mapped coverage of PacBio long-reads we saw reads address 63% of gaps in our budgerigar assembly, of which 32% were closed and 63% improved. With 6.8× mapped coverage of mangabey PacBio long-reads we addressed 97% of gaps and closed 66% of addressed gaps and improved 19%. The accuracy of gap closure was validated by comparison to Sanger sequencing on gaps from the original D. pseudoobscura draft assembly and shown to be dependent on initial reference quality.
PMCID: PMC3504050  PMID: 23185243
21.  Using Whole-Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster 
PLoS Genetics  2012;8(5):e1002685.
Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP) genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melanogaster, using ∼2.5 million SNPs determined by sequencing the Drosophila Genetic Reference Panel population of inbred lines. We constructed a genomic relationship matrix from the SNP data and used it in a genomic best linear unbiased prediction (GBLUP) model. We assessed predictive ability as the correlation between predicted genetic values and observed phenotypes by cross-validation, and found a predictive ability of 0.239±0.008 (0.230±0.012) for starvation resistance (startle response). The predictive ability of BayesB, a Bayesian method with internal SNP selection, was not greater than GBLUP. Selection of the 5% SNPs with either the highest absolute effect or variance explained did not improve predictive ability. Predictive ability decreased only when fewer than 150,000 SNPs were used to construct the genomic relationship matrix. We hypothesize that predictive power in this population stems from the SNP–based modeling of the subtle relationship structure caused by long-range linkage disequilibrium and not from population structure or SNPs in linkage disequilibrium with causal variants. We discuss the implications of these results for genomic prediction in other organisms.
Author Summary
The ability to accurately predict values of complex phenotypes from genotype data will revolutionize plant and animal breeding, personalized medicine, and evolutionary biology. To date, genomic prediction has utilized high-density single-nucleotide polymorphism (SNP) genotyping arrays, but the availability of sequence data opens new frontiers for genomic prediction methods. This article is the first application of genomic phenotype prediction using whole-genome sequence data in a substantial sample of a higher eukaryote. We use ∼2.5 million SNPs with minor allele frequency greater than 2.5% derived from genomic sequences of the “Drosophila Genetic Reference Panel” to predict phenotypes for two traits, starvation resistance and startle-induced locomotor behavior. We systematically address prediction within versus across sexes, genomic best linear unbiased prediction (GBLUP) versus a Bayesian approach, and the effect of SNP density. We find that (i) genomic prediction can be efficiently implemented using sequence data via GBLUP, (ii) there is little gain in predictive ability if the number of SNPs is increased above 150,000, and (iii) neither implicit nor explicit marker selection substantially improves the predictive ability. Although the findings must be seen against the background of small sample sizes, the results illustrate both the potential of the approach and the challenges ahead.
PMCID: PMC3342952  PMID: 22570636
22.  Analysis of Microsatellite Variation in Drosophila melanogaster with Population-Scale Genome Sequencing 
PLoS ONE  2012;7(3):e33036.
Genome sequencing technologies promise to revolutionize our understanding of genetics, evolution, and disease by making it feasible to survey a broad spectrum of sequence variation on a population scale. However, this potential can only be realized to the extent that methods for extracting and interpreting distinct forms of variation can be established. The error profiles and read length limitations of early versions of next-generation sequencing technologies rendered them ineffective for some sequence variant types, particularly microsatellites and other tandem repeats, and fostered the general misconception that such variants are inherently inaccessible to these platforms. At the same time, tandem repeats have emerged as important sources of functional variation. Tandem repeats are often located in and around genes, and frequent mutations in their lengths exert quantitative effects on gene function and phenotype, rapidly degrading linkage disequilibrium between markers and traits. Sensitive identification of these variants in large-scale next-gen sequencing efforts will enable more comprehensive association studies capable of revealing previously invisible associations. We present a population-scale analysis of microsatellite repeats using whole-genome data from 158 inbred isolates from the Drosophila Genetics Reference Panel, a collection of over 200 extensively phenotypically characterized isolates from a single natural population, to uncover processes underlying repeat mutation and to enable associations with behavioral, morphological, and life-history traits. Analysis of repeat variation from next-generation sequence data will also enhance studies of genome stability and neurodegenerative diseases.
PMCID: PMC3299726  PMID: 22427938
23.  Changes in Gene Expression in Human Meibomian Gland Dysfunction 
Human meibomian gland dysfunction, a leading cause of dry eye, is accompanied by numerous changes in glandular gene expression. The nature of these alterations suggests that keratinization plays an important role in this disease.
Meibomian gland dysfunction (MGD) may be the leading cause of dry eye syndrome throughout the world. However, the precise mechanism(s) underlying the pathogenesis of this disease is unclear. This study was conducted to identify meibomian gland genes that may promote the development and/or progression of human MGD.
Lid tissues were obtained from male and female MGD patients and age-matched controls after eyelid surgeries (e.g., to correct entropion or ectropion). Meibomian glands were isolated and processed for RNA extraction and the analysis of gene expression.
The results show that MGD is associated with significant alterations in the expression of almost 400 genes in the human meibomian gland. The levels of 197 transcripts, including those encoding various small proline-rich proteins and S100 calcium-binding proteins, are significantly increased, whereas the expression of 194 genes, such as claudin 3 and cell adhesion molecule 1, is significantly decreased. These changes, which cannot be accounted for by sex differences, are accompanied by alterations in many gene ontologies (e.g., keratinization, cell cycle, and DNA repair). The findings also show that the human meibomian gland contains several highly expressed genes that are distinct from those in an adjacent tissue (i.e., conjunctival epithelium).
The results demonstrate that MGD is accompanied by multiple changes in gene expression in the meibomian gland. The nature of these alterations, including the upregulation of genes encoding small proline-rich proteins and S100 calcium-binding proteins, suggest that keratinization plays an important role in the pathogenesis of MGD.
PMCID: PMC3088560  PMID: 21372006
24.  The herpetofauna of Timor-Leste: a first report 
ZooKeys  2011;19-86.
Fieldwork conducted throughout Timor-Leste in September 2004 and July 2009 resulted in a collection or recording of 263 herpetological specimens (100 amphibians, 163 reptiles), comprising at least seven species of frogs and toads, 20 species of lizards, seven species of snakes, two species of turtles, and one species of crocodile. Among the amphibians, the most frequently encountered species were toads (Duttaphrynus melanostictus), rice paddy frogs (genus Fejervarya), and rhacophorid treefrogs (Polypedates cf. leucomystax). All three variants of rice paddy frogs encountered represent undescribed species similar to Fejervarya verruculosa from neighboring Wetar Island. Records of Fejervarya cancrivora and Fejervarya limnocharis for Timor Island are apparently errors based on misidentification. We obtained voucher specimens for a total of 147 lizards and voucher photographs only for four specimens of Varanus timorensis. Aside from geckos frequently associated with human habitations (e.g., Gehyra mutilata, Gekko gecko, Hemidactylus frenatus, Hemidactylus platyurus), we discovered an as yet undescribed species of bent-toed gecko, genus Cyrtodactylus, in the Same valley. Our specimens of Hemidactylus platyurus are the first record of this species from Timor-Leste. Commonly encountered skinks included four-fingered skinks (genus Carlia), wedge skinks (genus Sphenomorphus), and night skinks (genus Eremiascincus). Notable among the 15 snakes collected was the frequency of pitvipers (Cryptelytrops insularis), which amounted to over 25% of all snakes. Our specimen of the wolfsnake Lycodon subcinctus is the first record of this species for Timor-Leste. Based on these findings, it appears that the biodiversity of amphibians and reptiles in this remote corner of Wallacea is much greater than previously thought, particularly with respect to scincid lizards. The detail we provide in the species accounts is designed to allow the use of this report as a preliminary field guide to the amphibians and reptiles of Timor-Leste. However, survey work is ongoing.
PMCID: PMC3118819  PMID: 21852932
herpetofauna; biodiversity; Timor-Leste; Wallacea
25.  Do Genetic Alterations in Sex Steroid Receptors Contribute to Lacrimal Gland Disease in Sjögren’s Syndrome? 
Defects in sex steroid receptors have been linked to the onset, progression and severity, as well as the sex-related prevalence, of a variety of autoimmune disorders, including lupus, rheumatoid arthritis, multiple sclerosis and diabetes. We hypothesize that defects in estrogen receptor α (ESR1), estrogen receptor β (ESR2) and/or the androgen receptor (AR) may also contribute to the development of lacrimal gland autoimmune sequelae in Sjögren’s syndrome. To begin to test this hypothesis, we examined whether mutations exist in the coding regions of ESR1, ESR2 and AR transcripts in lacrimal tissues of mouse models of Sjögren’s syndrome.
Lacrimal and submandibular glands were collected from adult MRL/MpJ-Tnfrsf6lpr, nonobese diabetic and/or BALB/c mice. Tissues were pooled according to sex and experiment and processed for cDNA generation. PCR primers were designed to amplify 566–875 base pair segments of the entire open reading frame of each receptor. Segments were amplified, purified and then sequenced. Receptor sequences were assembled and compared to each other and to known NCBI sequences.
Our results show that almost all ESR1, ESR2 and AR sequences in exocrine tissues of male and female autoimmune and non-autoimmune mice were identical to those of NCBI standards. There was a G→A shift at position 998 of the ESR2 complete coding sequence in all tissue samples when compared to NCBI reference sequence U81451.1, but this polymorphism was not found in other ESR2 reference sequences.
Our findings indicate that defects in the coding region of sex steroid receptors do not contribute to the pathogenesis of lacrimal gland disease in mouse models of Sjögren’s syndrome.
PMCID: PMC2789469  PMID: 19997529
Sex steroid receptors; lacrimal gland; autoimmune disease; androgen; estrogen

Results 1-25 (40)