Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4 
The Journal of Neuroscience  2014;34(46):15327-15339.
Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.
PMCID: PMC4228135  PMID: 25392500
activity-dependent gene expression; apoptosis; HDAC4; NMDA receptor
2.  High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors 
BMC Medical Genomics  2009;2:21.
DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions.
We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases.
Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.
These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.
PMCID: PMC2694826  PMID: 19419571
3.  CanPredict: a computational tool for predicting cancer-associated missense mutations 
Nucleic Acids Research  2007;35(Web Server issue):W595-W598.
Various cancer genome projects are underway to identify novel mutations that drive tumorigenesis. While these screens will generate large data sets, the majority of identified missense changes are likely to be innocuous passenger mutations or polymorphisms. As a result, it has become increasingly important to develop computational methods for distinguishing functionally relevant mutations from other variations. We previously developed an algorithm, and now present the web application, CanPredict ( or, to allow users to determine if particular changes are likely to be cancer-associated. The impact of each change is measured using two known methods: Sorting Intolerant From Tolerant (SIFT) and the Pfam-based LogR.E-value metric. A third method, the Gene Ontology Similarity Score (GOSS), provides an indication of how closely the gene in which the variant resides resembles other known cancer-causing genes. Scores from these three algorithms are analyzed by a random forest classifier which then predicts whether a change is likely to be cancer-associated. CanPredict fills an important need in cancer biology and will enable a large audience of biologists to determine which mutations are the most relevant for further study.
PMCID: PMC1933186  PMID: 17537827
4.  Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes 
PLoS Computational Biology  2006;2(3):e15.
We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans) together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales—from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for “Comparative Genomics Library”). Our results demonstrate that change in intron–exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.
Just as protein sequences change over time, so do gene structures. Over comparatively short evolutionary timescales, introns lengthen and shorten; and over longer timescales the number and positions of introns in homologous genes can change. These facts suggest that the intron–exon structures of genes may provide a source of evolutionary information. The utility of gene structures as materials for phylogenetic analyses, however, depends upon their independence from the forces driving protein evolution. If, for example, intron–exon structures are strongly influenced by selection at the amino acid level, then using them for phylogenetic investigations is largely pointless, as the same information could have been more easily gained from protein analyses. Using 11 animal genomes, Yandell et al. show that evolution of intron lengths and positions is largely—though not completely—independent of protein sequence evolution. This means that gene structures provide a source of information about the evolutionary past independent of protein sequence similarities—a finding the authors employ to investigate the accuracy of the protein clock and to explore the utility of gene structures as a means to resolve deep phylogenetic relationships within the animals.
PMCID: PMC1386723  PMID: 16518452
5.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly 
Genome Biology  2002;3(12):research0085.1-85.16.
Annotation of an improved whole-genome shotgun assembly of the Drosophila melanogaster genome predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Fluorescence in situ hybridization was used to correlate the genomic sequence with the cytogenetic map; the annotated euchromatic sequence extends into the centric heterochromatin on each chromosome arm.
Most eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly.
WGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm.
Whole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes.
PMCID: PMC151187  PMID: 12537574
6.  Annotation of the Drosophila melanogaster euchromatic genome: a systematic review 
Genome Biology  2002;3(12):research0083.1-83.22.
The recent completion of the Drosophila melanogaster genomic sequence to high quality, and the availability of a greatly expanded set of Drosophila cDNA sequences, afforded FlyBase the opportunity to significantly improve genomic annotations.
The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.
Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.
Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
PMCID: PMC151185  PMID: 12537572
7.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective 
Genome Biology  2002;3(12):research0084.1-84.2.
Using Release 3 of the euchromatic genomic sequence of Drosophila melanogaster, 85 known and eight novel families of transposable element have been identified, varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence.
Transposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species.
We identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes.
This analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses.
PMCID: PMC151186  PMID: 12537573

Results 1-7 (7)