PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Huang, tanmei")
1.  Translational Profiling of Clock Cells Reveals Circadianly Synchronized Protein Synthesis 
PLoS Biology  2013;11(11):e1001703.
This study describes, for the first time, the rhythmic translational program within circadian clock cells. The results indicate that most clock cell mRNAs are translated at low-energy times of either mid-day or mid-night, and also that related cellular functions are coordinately regulated by the synchronized translation of relevant mRNAs at the same time of day.
Abstract
Genome-wide studies of circadian transcription or mRNA translation have been hindered by the presence of heterogeneous cell populations in complex tissues such as the nervous system. We describe here the use of a Drosophila cell-specific translational profiling approach to document the rhythmic “translatome” of neural clock cells for the first time in any organism. Unexpectedly, translation of most clock-regulated transcripts—as assayed by mRNA ribosome association—occurs at one of two predominant circadian phases, midday or mid-night, times of behavioral quiescence; mRNAs encoding similar cellular functions are translated at the same time of day. Our analysis also indicates that fundamental cellular processes—metabolism, energy production, redox state (e.g., the thioredoxin system), cell growth, signaling and others—are rhythmically modulated within clock cells via synchronized protein synthesis. Our approach is validated by the identification of mRNAs known to exhibit circadian changes in abundance and the discovery of hundreds of novel mRNAs that show translational rhythms. This includes Tdc2, encoding a neurotransmitter synthetic enzyme, which we demonstrate is required within clock neurons for normal circadian locomotor activity.
Author Summary
The circadian clock controls daily rhythms in physiology and behavior via mechanisms that regulate gene expression. While numerous studies have examined the clock regulation of gene transcription and documented rhythms in mRNA abundance, less is known about how circadian changes in protein synthesis contribute to the orchestration of physiological and behavioral programs. Here we have monitored mRNA ribosomal association (as a proxy for translation) to globally examine the circadian timing of protein synthesis specifically within clock cells of Drosophila. The results reveal, for the first time in any organism, the complete circadian program of protein synthesis (the “circadian translatome”) within these cells. A novel finding is that most mRNAs within clock cells are translated at one of two predominant circadian phases—midday or mid-night—times of low energy expenditure. Our work also finds that many clock cell processes, including metabolism, redox state, signaling, neurotransmission, and even protein synthesis itself, are coordinately regulated such that mRNAs required for similar cellular functions are translated in synchrony at the same time of day.
doi:10.1371/journal.pbio.1001703
PMCID: PMC3864454  PMID: 24348200
2.  Development of dendrite polarity in Drosophila neurons 
Neural Development  2012;7:34.
Background
Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites.
Results
To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case.
Conclusions
We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity.
doi:10.1186/1749-8104-7-34
PMCID: PMC3570434  PMID: 23111238
3.  Altered LARK Expression Perturbs Development and Physiology of the Drosophila PDF Clock Neurons 
The LARK RNA-binding protein (RBP) has well documented roles in the circadian systems of Drosophila and mammals. Recent studies have demonstrated that the Drosophila LARK RBP is associated with many mRNA targets, in vivo, including those that regulate either neurophysiology or development of the nervous system. In the present study, we have employed conditional expression techniques to distinguish developmental and physiological functions of LARK for a defined class of neurons: the Pigment Dispersing Factor (PDF)-containing LNv clock neurons. We found that increased LARK expression during development dramatically alters the small LNv class of neurons with no obvious effects on the large LNv cells. Conversely, conditional expression of LARK at the adult stage results in altered clock protein rhythms and circadian locomotor activity, even though neural morphology is normal in such animals. Electrophysiological analyses at the larval neuromuscular junction indicate a role for LARK in regulating neuronal excitability. Altogether, our results demonstrate that LARK activity is critical for neuronal development and physiology.
doi:10.1016/j.mcn.2009.02.013
PMCID: PMC2693285  PMID: 19303442
Drosophila; circadian; post-transcriptional; development; neuronal excitability; RBM4
4.  The LARK RNA-Binding Protein Selectively Regulates the Circadian Eclosion Rhythm by Controlling E74 Protein Expression 
PLoS ONE  2007;2(10):e1107.
Despite substantial progress in defining central components of the circadian pacemaker, the output pathways coupling the clock to rhythmic physiological events remain elusive. We previously showed that LARK is a Drosophila RNA-binding protein which functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the circadian system, we sought to identify RNA molecules associated with it, in vivo, using a three-part strategy to (1) capture RNA ligands by immunoprecipitation, (2) visualize the captured RNAs using whole-genome microarrays, and (3) identify functionally relevant targets through genetic screens. We found that LARK is associated with a large number of RNAs, in vivo, consistent with its broad expression pattern. Overexpression of LARK increases protein abundance for certain targets without affecting RNA level, suggesting a translational regulatory role for the RNA-binding protein. Phenotypic screens of target-gene mutants have identified several with rhythm-specific circadian defects, indicative of effects on clock output pathways. In particular, a hypomorphic mutation in the E74 gene, E74BG01805, was found to confer an early-eclosion phenotype reminiscent of that displayed by a mutant with decreased LARK gene dosage. Molecular analyses demonstrate that E74A protein shows diurnal changes in abundance, similar to LARK. In addition, the E74BG01805 allele enhances the lethal phenotype associated with a lark null mutation, whereas overexpression of LARK suppresses the early eclosion phenotype of E74BG01805, consistent with the idea that E74 is a target, in vivo. Our results suggest a model wherein LARK mediates the transfer of temporal information from the molecular oscillator to different output pathways by interacting with distinct RNA targets.
doi:10.1371/journal.pone.0001107
PMCID: PMC2040218  PMID: 17971870
5.  Annotation of the Drosophila melanogaster euchromatic genome: a systematic review 
Genome Biology  2002;3(12):research0083.1-83.22.
The recent completion of the Drosophila melanogaster genomic sequence to high quality, and the availability of a greatly expanded set of Drosophila cDNA sequences, afforded FlyBase the opportunity to significantly improve genomic annotations.
Background
The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.
Results
Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.
Conclusions
Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
doi:10.1186/gb-2002-3-12-research0083
PMCID: PMC151185  PMID: 12537572

Results 1-5 (5)