PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Finding Our Way through Phenotypes 
Deans, Andrew R. | Lewis, Suzanna E. | Huala, Eva | Anzaldo, Salvatore S. | Ashburner, Michael | Balhoff, James P. | Blackburn, David C. | Blake, Judith A. | Burleigh, J. Gordon | Chanet, Bruno | Cooper, Laurel D. | Courtot, Mélanie | Csösz, Sándor | Cui, Hong | Dahdul, Wasila | Das, Sandip | Dececchi, T. Alexander | Dettai, Agnes | Diogo, Rui | Druzinsky, Robert E. | Dumontier, Michel | Franz, Nico M. | Friedrich, Frank | Gkoutos, George V. | Haendel, Melissa | Harmon, Luke J. | Hayamizu, Terry F. | He, Yongqun | Hines, Heather M. | Ibrahim, Nizar | Jackson, Laura M. | Jaiswal, Pankaj | James-Zorn, Christina | Köhler, Sebastian | Lecointre, Guillaume | Lapp, Hilmar | Lawrence, Carolyn J. | Le Novère, Nicolas | Lundberg, John G. | Macklin, James | Mast, Austin R. | Midford, Peter E. | Mikó, István | Mungall, Christopher J. | Oellrich, Anika | Osumi-Sutherland, David | Parkinson, Helen | Ramírez, Martín J. | Richter, Stefan | Robinson, Peter N. | Ruttenberg, Alan | Schulz, Katja S. | Segerdell, Erik | Seltmann, Katja C. | Sharkey, Michael J. | Smith, Aaron D. | Smith, Barry | Specht, Chelsea D. | Squires, R. Burke | Thacker, Robert W. | Thessen, Anne | Fernandez-Triana, Jose | Vihinen, Mauno | Vize, Peter D. | Vogt, Lars | Wall, Christine E. | Walls, Ramona L. | Westerfeld, Monte | Wharton, Robert A. | Wirkner, Christian S. | Woolley, James B. | Yoder, Matthew J. | Zorn, Aaron M. | Mabee, Paula
PLoS Biology  2015;13(1):e1002033.
Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.
doi:10.1371/journal.pbio.1002033
PMCID: PMC4285398  PMID: 25562316
3.  The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology 
Background
Porifera (sponges) are ancient basal metazoans that lack organs. They provide insight into key evolutionary transitions, such as the emergence of multicellularity and the nervous system. In addition, their ability to synthesize unusual compounds offers potential biotechnical applications. However, much of the knowledge of these organisms has not previously been codified in a machine-readable way using modern web standards.
Results
The Porifera Ontology is intended as a standardized coding system for sponge anatomical features currently used in systematics. The ontology is available from http://purl.obolibrary.org/obo/poro.owl, or from the project homepage http://porifera-ontology.googlecode.com/. The version referred to in this manuscript is permanently available from http://purl.obolibrary.org/obo/poro/releases/2014-03-06/.
Conclusions
By standardizing character representations, we hope to facilitate more rapid description and identification of sponge taxa, to allow integration with other evolutionary database systems, and to perform character mapping across the major clades of sponges to better understand the evolution of morphological features. Future applications of the ontology will focus on creating (1) ontology-based species descriptions; (2) taxonomic keys that use the nested terms of the ontology to more quickly facilitate species identifications; and (3) methods to map anatomical characters onto molecular phylogenies of sponges. In addition to modern taxa, the ontology is being extended to include features of fossil taxa.
doi:10.1186/2041-1480-5-39
PMCID: PMC4177528  PMID: 25276334
Morphology; Taxonomic identification; Phylogenetics; Evolution
4.  Deletions of chromosomal regulatory boundaries are associated with congenital disease 
Genome Biology  2014;15(9):423.
Background
Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption.
Results
We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects.
Conclusions
Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0423-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s13059-014-0423-1
PMCID: PMC4180961  PMID: 25315429
5.  Nose to tail, roots to shoots: spatial descriptors for phenotypic diversity in the Biological Spatial Ontology 
Background
Spatial terminology is used in anatomy to indicate precise, relative positions of structures in an organism. While these terms are often standardized within specific fields of biology, they can differ dramatically across taxa. Such differences in usage can impair our ability to unambiguously refer to anatomical position when comparing anatomy or phenotypes across species. We developed the Biological Spatial Ontology (BSPO) to standardize the description of spatial and topological relationships across taxa to enable the discovery of comparable phenotypes.
Results
BSPO currently contains 146 classes and 58 relations representing anatomical axes, gradients, regions, planes, sides, and surfaces. These concepts can be used at multiple biological scales and in a diversity of taxa, including plants, animals and fungi. The BSPO is used to provide a source of anatomical location descriptors for logically defining anatomical entity classes in anatomy ontologies. Spatial reasoning is further enhanced in anatomy ontologies by integrating spatial relations such as dorsal_to into class descriptions (e.g., ‘dorsolateral placode’ dorsal_to some ‘epibranchial placode’).
Conclusions
The BSPO is currently used by projects that require standardized anatomical descriptors for phenotype annotation and ontology integration across a diversity of taxa. Anatomical location classes are also useful for describing phenotypic differences, such as morphological variation in position of structures resulting from evolution within and across species.
doi:10.1186/2041-1480-5-34
PMCID: PMC4137724  PMID: 25140222
Anatomy; Spatial relationships; Position; Axes; Reasoning; BSPO; Ontology; Phenotype
6.  The influence of disease categories on gene candidate predictions from model organism phenotypes 
Journal of Biomedical Semantics  2014;5(Suppl 1):S4.
Background
The molecular etiology is still to be identified for about half of the currently described Mendelian diseases in humans, thereby hindering efforts to find treatments or preventive measures. Advances, such as new sequencing technologies, have led to increasing amounts of data becoming available with which to address the problem of identifying disease genes. Therefore, automated methods are needed that reliably predict disease gene candidates based on available data. We have recently developed Exomiser as a tool for identifying causative variants from exome analysis results by filtering and prioritising using a number of criteria including the phenotype similarity between the disease and mouse mutants involving the gene candidates. Initial investigations revealed a variation in performance for different medical categories of disease, due in part to a varying contribution of the phenotype scoring component.
Results
In this study, we further analyse the performance of our cross-species phenotype matching algorithm, and examine in more detail the reasons why disease gene filtering based on phenotype data works better for certain disease categories than others. We found that in addition to misleading phenotype alignments between species, some disease categories are still more amenable to automated predictions than others, and that this often ties in with community perceptions on how well the organism works as model.
Conclusions
In conclusion, our automated disease gene candidate predictions are highly dependent on the organism used for the predictions and the disease category being studied. Future work on computational disease gene prediction using phenotype data would benefit from methods that take into account the disease category and the source of model organism data.
doi:10.1186/2041-1480-5-S1-S4
PMCID: PMC4108905  PMID: 25093073
7.  Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon 
Background
Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent ‘natural’ phenotypic variation across species. Our aim has been to integrate ssAOs and msAOs for various purposes, including establishing links between phenotypic variation and candidate genes.
Results
Previously, msAOs contained a mixture of unique and overlapping content. This hampered integration and coordination due to the need to maintain cross-references or inter-ontology equivalence axioms to the ssAOs, or to perform large-scale obsolescence and modular import. Here we present the unification of anatomy ontologies into Uberon, a single ontology resource that enables interoperability among disparate data and research groups. As a consequence, independent development of TAO, VSAO, AAO, and vHOG has been discontinued.
Conclusions
The newly broadened Uberon ontology is a unified cross-taxon resource for metazoans (animals) that has been substantially expanded to include a broad diversity of vertebrate anatomical structures, permitting reasoning across anatomical variation in extinct and extant taxa. Uberon is a core resource that supports single- and cross-species queries for candidate genes using annotations for phenotypes from the systematics, biodiversity, medical, and model organism communities, while also providing entities for logical definitions in the Cell and Gene Ontologies.
The ontology release files associated with the ontology merge described in this manuscript are available at: http://purl.obolibrary.org/obo/uberon/releases/2013-02-21/
Current ontology release files are available always available at: http://purl.obolibrary.org/obo/uberon/releases/
doi:10.1186/2041-1480-5-21
PMCID: PMC4089931  PMID: 25009735
Evolutionary biology; Morphological variation; Phenotype; Semantic integration; Bio-ontology
8.  Thematic series on biomedical ontologies in JBMS: challenges and new directions 
Over the past 15 years, the biomedical research community has increased its efforts to produce ontologies encoding biomedical knowledge, and to provide the corresponding infrastructure to maintain them. As ontologies are becoming a central part of biological and biomedical research, a communication channel to publish frequent updates and latest developments on them would be an advantage.
Here, we introduce the JBMS thematic series on Biomedical Ontologies. The aim of the series is to disseminate the latest developments in research on biomedical ontologies and provide a venue for publishing newly developed ontologies, updates to existing ontologies as well as methodological advances, and selected contributions from conferences and workshops. We aim to give this thematic series a central role in the exploration of ongoing research in biomedical ontologies and intend to work closely together with the research community towards this aim. Researchers and working groups are encouraged to provide feedback on novel developments and special topics to be integrated into the existing publication cycles.
doi:10.1186/2041-1480-5-15
PMCID: PMC4006457  PMID: 24602198
9.  The zebrafish anatomy and stage ontologies: representing the anatomy and development of Danio rerio 
Background
The Zebrafish Anatomy Ontology (ZFA) is an OBO Foundry ontology that is used in conjunction with the Zebrafish Stage Ontology (ZFS) to describe the gross and cellular anatomy and development of the zebrafish, Danio rerio, from single cell zygote to adult. The zebrafish model organism database (ZFIN) uses the ZFA and ZFS to annotate phenotype and gene expression data from the primary literature and from contributed data sets.
Results
The ZFA models anatomy and development with a subclass hierarchy, a partonomy, and a developmental hierarchy and with relationships to the ZFS that define the stages during which each anatomical entity exists. The ZFA and ZFS are developed utilizing OBO Foundry principles to ensure orthogonality, accessibility, and interoperability. The ZFA has 2860 classes representing a diversity of anatomical structures from different anatomical systems and from different stages of development.
Conclusions
The ZFA describes zebrafish anatomy and development semantically for the purposes of annotating gene expression and anatomical phenotypes. The ontology and the data have been used by other resources to perform cross-species queries of gene expression and phenotype data, providing insights into genetic relationships, morphological evolution, and models of human disease.
doi:10.1186/2041-1480-5-12
PMCID: PMC3944782  PMID: 24568621
10.  The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data 
Nucleic Acids Research  2013;42(Database issue):D966-D974.
The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.
doi:10.1093/nar/gkt1026
PMCID: PMC3965098  PMID: 24217912
11.  A sea of standards for omics data: sink or swim? 
In the era of Big Data, omic-scale technologies, and increasing calls for data sharing, it is generally agreed that the use of community-developed, open data standards is critical. Far less agreed upon is exactly which data standards should be used, the criteria by which one should choose a standard, or even what constitutes a data standard. It is impossible simply to choose a domain and have it naturally follow which data standards should be used in all cases. The ‘right’ standards to use is often dependent on the use case scenarios for a given project. Potential downstream applications for the data, however, may not always be apparent at the time the data are generated. Similarly, technology evolves, adding further complexity. Would-be standards adopters must strike a balance between planning for the future and minimizing the burden of compliance. Better tools and resources are required to help guide this balancing act.
doi:10.1136/amiajnl-2013-002066
PMCID: PMC3932466  PMID: 24076747
Data Standards; Data Sharing; Terminology; Information dissemination
12.  On the reproducibility of science: unique identification of research resources in the biomedical literature 
PeerJ  2013;1:e148.
Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the “identifiability” of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.
doi:10.7717/peerj.148
PMCID: PMC3771067  PMID: 24032093
Scientific reproducibility; Materials and Methods; Constructs; Cell lines; Antibodies; Knockdown reagents; Model organisms
13.  An F-Domain Introduced by Alternative Splicing Regulates Activity of the Zebrafish Thyroid Hormone Receptor α 
Thyroid hormones (THs) play an important role in vertebrate development; however, the underlying mechanisms of their actions are still poorly understood. Zebrafish (Danio rerio) is an emerging vertebrate model system to study the roles of THs during development. In general, the response to THs relies on closely related proteins and mechanisms across vertebrate species, however some species-specific differences exist. In contrast to mammals, zebrafish has two TRα genes (thraa, thrab). Moreover, the zebrafish thraa gene expresses a TRα isoform (TRαA1) that differs from other TRs by containing additional C-terminal amino acids. C-terminal extensions, called “F domains”, are common in other members of the nuclear receptor superfamily and modulate the response of these receptors to hormones. Here we demonstrate that the F-domain constrains the transcriptional activity of zebrafish TRα by altering the selectivity of this receptor for certain coactivator binding motifs. We found that the F-domain of zebrafish TRαA1 is encoded on a separate exon whose inclusion is regulated by alternative splicing, indicating a regulatory role of the F-domain in vivo. Quantitative expression analyses revealed that TRαA1 is primarily expressed in reproductive organs whereas TRαB and the TRαA isoform that lacks the F-domain (TRαA1-2) appear to be ubiquitous. The relative expression levels of these TRα transcripts differ in a tissue-specific manner suggesting that zebrafish uses both alternative splicing and differential expression of TRα genes to diversify the cellular response to THs.
doi:10.1016/j.ygcen.2007.04.012
PMCID: PMC3758257  PMID: 17583703
Thyroid Hormone; Thyroid hormone receptor; Isoforms; Danio rerio; F-domain
14.  Ontology based molecular signatures for immune cell types via gene expression analysis 
BMC Bioinformatics  2013;14:263.
Background
New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type’s identity.
Results
We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types.
Conclusions
This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new biological insights.
doi:10.1186/1471-2105-14-263
PMCID: PMC3844401  PMID: 24004649
15.  From EHRs to Linked Data: representing and mining encounter data for clinical expertise evaluation 
Translational science, today, involves multidisciplinary teams of scientists rather than single scientists. Teams facilitate biologically meaningful and clinically consequential breakthroughs. There are a myriad of sources of data about investigators, physicians, research resources, clinical encounters, and expertise to promote team interaction; however, much of this information is not connected and is left siloed. Large amounts of data have been published as Linked Data (LD), but there still remains a significant gap in the representation and connection of research resources and clinical expertise data. The CTSAconnect project addresses the problem of fragmentation and incompatible coding of information by creating a Semantic Framework that facilitates the production and consumption of LD about biomedical research resources, clinical activities, as well as investigator and physician expertise.
PMCID: PMC3814477  PMID: 24303330
16.  An ontology-based method for secondary use of electronic dental record data  
A key question for healthcare is how to operationalize the vision of the Learning Healthcare System, in which electronic health record data become a continuous information source for quality assurance and research. This project presents an initial, ontology-based, method for secondary use of electronic dental record (EDR) data. We defined a set of dental clinical research questions; constructed the Oral Health and Disease Ontology (OHD); analyzed data from a commercial EDR database; and created a knowledge base, with the OHD used to represent clinical data about 4,500 patients from a single dental practice. Currently, the OHD includes 213 classes and reuses 1,658 classes from other ontologies. We have developed an initial set of SPARQL queries to allow extraction of data about patients, teeth, surfaces, restorations and findings. Further work will establish a complete, open and reproducible workflow for extracting and aggregating data from a variety of EDRs for research and quality assurance.
PMCID: PMC3845770  PMID: 24303273
17.  An overview of the BioCreative 2012 Workshop Track III: interactive text mining task 
In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators’ overall experience of a system, regardless of the system’s high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV.
doi:10.1093/database/bas056
PMCID: PMC3625048  PMID: 23327936
18.  A Unified Anatomy Ontology of the Vertebrate Skeletal System 
PLoS ONE  2012;7(12):e51070.
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.
doi:10.1371/journal.pone.0051070
PMCID: PMC3519498  PMID: 23251424
19.  Dealing with Data: A Case Study on Information and Data Management Literacy 
PLoS Biology  2012;10(5):e1001339.
The launch of the eagle-i Consortium, a collaborative network for sharing information about research resources, such as protocols and reagents, provides a vivid demonstration of the challenges that researchers, libraries and institutions face in making their data available to others.
doi:10.1371/journal.pbio.1001339
PMCID: PMC3362643  PMID: 22666180
20.  Research resources: curating the new eagle-i discovery system 
Development of biocuration processes and guidelines for new data types or projects is a challenging task. Each project finds its way toward defining annotation standards and ensuring data consistency with varying degrees of planning and different tools to support and/or report on consistency. Further, this process may be data type specific even within the context of a single project. This article describes our experiences with eagle-i, a 2-year pilot project to develop a federated network of data repositories in which unpublished, unshared or otherwise ‘invisible’ scientific resources could be inventoried and made accessible to the scientific community. During the course of eagle-i development, the main challenges we experienced related to the difficulty of collecting and curating data while the system and the data model were simultaneously built, and a deficiency and diversity of data management strategies in the laboratories from which the source data was obtained. We discuss our approach to biocuration and the importance of improving information management strategies to the research process, specifically with regard to the inventorying and usage of research resources. Finally, we highlight the commonalities and differences between eagle-i and similar efforts with the hope that our lessons learned will assist other biocuration endeavors.
Database URL: www.eagle-i.net
doi:10.1093/database/bar067
PMCID: PMC3308157  PMID: 22434835
21.  Uberon, an integrative multi-species anatomy ontology 
Genome Biology  2012;13(1):R5.
We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org
doi:10.1186/gb-2012-13-1-r5
PMCID: PMC3334586  PMID: 22293552
22.  The Teleost Anatomy Ontology: Anatomical Representation for the Genomics Age 
Systematic Biology  2010;59(4):369-383.
The rich knowledge of morphological variation among organisms reported in the systematic literature has remained in free-text format, impractical for use in large-scale synthetic phylogenetic work. This noncomputable format has also precluded linkage to the large knowledgebase of genomic, genetic, developmental, and phenotype data in model organism databases. We have undertaken an effort to prototype a curated, ontology-based evolutionary morphology database that maps to these genetic databases (http://kb.phenoscape.org) to facilitate investigation into the mechanistic basis and evolution of phenotypic diversity. Among the first requirements in establishing this database was the development of a multispecies anatomy ontology with the goal of capturing anatomical data in a systematic and computable manner. An ontology is a formal representation of a set of concepts with defined relationships between those concepts. Multispecies anatomy ontologies in particular are an efficient way to represent the diversity of morphological structures in a clade of organisms, but they present challenges in their development relative to single-species anatomy ontologies. Here, we describe the Teleost Anatomy Ontology (TAO), a multispecies anatomy ontology for teleost fishes derived from the Zebrafish Anatomical Ontology (ZFA) for the purpose of annotating varying morphological features across species. To facilitate interoperability with other anatomy ontologies, TAO uses the Common Anatomy Reference Ontology as a template for its upper level nodes, and TAO and ZFA are synchronized, with zebrafish terms specified as subtypes of teleost terms. We found that the details of ontology architecture have ramifications for querying, and we present general challenges in developing a multispecies anatomy ontology, including refinement of definitions, taxon-specific relationships among terms, and representation of taxonomically variable developmental pathways.
doi:10.1093/sysbio/syq013
PMCID: PMC2885267  PMID: 20547776
Bioinformatics; devo-evo; fish; morphology; ontology; Teleostei
23.  Integrating phenotype ontologies across multiple species 
Genome Biology  2010;11(1):R2.
A phenotypic ontology that can be used for the analysis of phenotype-genotype data across multiple species, paving the way for truly cross species translational research.
Phenotype ontologies are typically constructed to serve the needs of a particular community, such as annotation of genotype-phenotype associations in mouse or human. Here we demonstrate how these ontologies can be improved through assignment of logical definitions using a core ontology of phenotypic qualities and multiple additional ontologies from the Open Biological Ontologies library. We also show how these logical definitions can be used for data integration when combined with a unified multi-species anatomy ontology.
doi:10.1186/gb-2010-11-1-r2
PMCID: PMC2847714  PMID: 20064205
24.  Linking Human Diseases to Animal Models Using Ontology-Based Phenotype Annotation 
PLoS Biology  2009;7(11):e1000247.
A novel method for quantifying the similarity between phenotypes by the use of ontologies can be used to search for candidate genes, pathway members, and human disease models on the basis of phenotypes alone.
Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ) methodology, wherein the affected entity (E) and how it is affected (Q) are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM). These human annotations were loaded into our Ontology-Based Database (OBD) along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify gene candidates and animal models of human disease, which may shorten the lengthy path to identification and understanding of the genetic basis of human disease.
Author Summary
Model organisms such as fruit flies, mice, and zebrafish are useful for investigating gene function because they are easy to grow, dissect, and genetically manipulate in the laboratory. By examining mutations in these organisms, one can identify candidate genes that cause disease in humans, and develop models to better understand human disease and gene function. A fundamental roadblock for analysis is, however, the lack of a computational method for describing and comparing phenotypes of mutant animals and of human diseases when the genetic basis is unknown. We describe here a novel method using ontologies to record and quantify the similarity between phenotypes. We tested our method by using the annotated mutant phenotype of one member of the Hedgehog signaling pathway in zebrafish to identify other pathway members with similar recorded phenotypes. We also compared human disease phenotypes to those produced by mutation in model organisms, and show that orthologous and biologically relevant genes can be identified by this method. Given that the genetic basis of human disease is often unknown, this method provides a means for identifying candidate genes, pathway members, and disease models by computationally identifying similar phenotypes within and across species.
doi:10.1371/journal.pbio.1000247
PMCID: PMC2774506  PMID: 19956802
25.  The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes 
Nucleic Acids Research  2007;36(Database issue):D768-D772.
The Zebrafish Information Network (ZFIN, http://zfin.org), the model organism database for zebrafish, provides the central location for curated zebrafish genetic, genomic and developmental data. Extensive data integration of mutant phenotypes, genes, expression patterns, sequences, genetic markers, morpholinos, map positions, publications and community resources facilitates the use of the zebrafish as a model for studying gene function, development, behavior and disease. Access to ZFIN data is provided via web-based query forms and through bulk data files. ZFIN is the definitive source for zebrafish gene and allele nomenclature, the zebrafish anatomical ontology (AO) and for zebrafish gene ontology (GO) annotations. ZFIN plays an active role in the development of cross-species ontologies such as the phenotypic quality ontology (PATO) and the gene ontology (GO). Recent enhancements to ZFIN include (i) a new home page and navigation bar, (ii) expanded support for genotypes and phenotypes, (iii) comprehensive phenotype annotations based on anatomical, phenotypic quality and gene ontologies, (iv) a BLAST server tightly integrated with the ZFIN database via ZFIN-specific datasets, (v) a global site search and (vi) help with hands-on resources.
doi:10.1093/nar/gkm956
PMCID: PMC2238839  PMID: 17991680

Results 1-25 (26)