Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  New approaches to the representation and analysis of phenotype knowledge in human diseases and their animal models 
Briefings in Functional Genomics  2011;10(5):258-265.
The systematic investigation of the phenotypes associated with genotypes in model organisms holds the promise of revealing genotype–phenotype relations directly and without additional, intermediate inferences. Large-scale projects are now underway to catalog the complete phenome of a species, notably the mouse. With the increasing amount of phenotype information becoming available, a major challenge that biology faces today is the systematic analysis of this information and the translation of research results across species and into an improved understanding of human disease. The challenge is to integrate and combine phenotype descriptions within a species and to systematically relate them to phenotype descriptions in other species, in order to form a comprehensive understanding of the relations between those phenotypes and the genotypes involved in human disease. We distinguish between two major approaches for comparative phenotype analyses: the first relies on evolutionary relations to bridge the species gap, while the other approach compares phenotypes directly. In particular, the direct comparison of phenotypes relies heavily on the quality and coherence of phenotype and disease databases. We discuss major achievements and future challenges for these databases in light of their potential to contribute to the understanding of the molecular mechanisms underlying human disease. In particular, we discuss how the use of ontologies and automated reasoning can significantly contribute to the analysis of phenotypes and demonstrate their potential for enabling translational research.
PMCID: PMC3189694  PMID: 21987712
phenotype; animal model; disease; database; comparative phenomics; ontology
2.  The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data 
Nucleic Acids Research  2013;42(D1):D966-D974.
The Human Phenotype Ontology (HPO) project, available at, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.
PMCID: PMC3965098  PMID: 24217912
3.  Mouse model phenotypes provide information about human drug targets 
Bioinformatics  2013;30(5):719-725.
Motivation: Methods for computational drug target identification use information from diverse information sources to predict or prioritize drug targets for known drugs. One set of resources that has been relatively neglected for drug repurposing is animal model phenotype.
Results: We investigate the use of mouse model phenotypes for drug target identification. To achieve this goal, we first integrate mouse model phenotypes and drug effects, and then systematically compare the phenotypic similarity between mouse models and drug effect profiles. We find a high similarity between phenotypes resulting from loss-of-function mutations and drug effects resulting from the inhibition of a protein through a drug action, and demonstrate how this approach can be used to suggest candidate drug targets.
Availability and implementation: Analysis code and supplementary data files are available on the project Web site at
Contact: or
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3933875  PMID: 24158600
4.  The Drosophila phenotype ontology 
Phenotype ontologies are queryable classifications of phenotypes. They provide a widely-used means for annotating phenotypes in a form that is human-readable, programatically accessible and that can be used to group annotations in biologically meaningful ways. Accurate manual annotation requires clear textual definitions for terms. Accurate grouping and fruitful programatic usage require high-quality formal definitions that can be used to automate classification. The Drosophila phenotype ontology (DPO) has been used to annotate over 159,000 phenotypes in FlyBase to date, but until recently lacked textual or formal definitions.
We have composed textual definitions for all DPO terms and formal definitions for 77% of them. Formal definitions reference terms from a range of widely-used ontologies including the Phenotype and Trait Ontology (PATO), the Gene Ontology (GO) and the Cell Ontology (CL). We also describe a generally applicable system, devised for the DPO, for recording and reasoning about the timing of death in populations. As a result of the new formalisations, 85% of classifications in the DPO are now inferred rather than asserted, with much of this classification leveraging the structure of the GO. This work has significantly improved the accuracy and completeness of classification and made further development of the DPO more sustainable.
The DPO provides a set of well-defined terms for annotating Drosophila phenotypes and for grouping and querying the resulting annotation sets in biologically meaningful ways. Such queries have already resulted in successful function predictions from phenotype annotation. Moreover, such formalisations make extended queries possible, including cross-species queries via the external ontologies used in formal definitions. The DPO is openly available under an open source license in both OBO and OWL formats. There is good potential for it to be used more broadly by the Drosophila community, which may ultimately result in its extension to cover a broader range of phenotypes.
PMCID: PMC3816596  PMID: 24138933
Drosophila; Phenotype; Ontology; OWL; OBO; Gene ontology; FlyBase
5.  Computational tools for comparative phenomics; the role and promise of ontologies 
A major aim of the biological sciences is to gain an understanding of human physiology and disease. One important step towards such a goal is the discovery of the function of genes that will lead to better understanding of the physiology and pathophysiology of organisms ultimately providing better understanding, diagnosis, and therapy. Our increasing ability to phenotypically characterise genetic variants of model organisms coupled with systematic and hypothesis-driven mutagenesis is resulting in a wealth of information that could potentially provide insight to the functions of all genes in an organism. The challenge we are now facing is to develop computational methods that can integrate and analyse such data. The introduction of formal ontologies that make their semantics explicit and accessible to automated reasoning promises the tantalizing possibility of standardizing biomedical knowledge allowing for novel, powerful queries that bridge multiple domains, disciplines, species and levels of granularity. We review recent computational approaches that facilitate the integration of experimental data from model organisms with clinical observations in humans. These methods foster novel cross species analysis approaches, thereby enabling comparative phenomics and leading to the potential of translating basic discoveries from the model systems into diagnostic and therapeutic advances at the clinical level.
PMCID: PMC3488439  PMID: 22814867
6.  The mouse pathology ontology, MPATH; structure and applications 
The capture and use of disease-related anatomic pathology data for both model organism phenotyping and human clinical practice requires a relatively simple nomenclature and coding system that can be integrated into data collection platforms (such as computerized medical record-keeping systems) to enable the pathologist to rapidly screen and accurately record observations. The MPATH ontology was originally constructed in 2,000 by a committee of pathologists for the annotation of rodent histopathology images, but is now widely used for coding and analysis of disease and phenotype data for rodents, humans and zebrafish.
Construction and content
MPATH is divided into two main branches describing pathological processes and structures based on traditional histopathological principles. It does not aim to include definitive diagnoses, which would generally be regarded as disease concepts. It contains 888 core pathology terms in an almost exclusively is_a hierarchy nine layers deep. Currently, 86% of the terms have textual definitions and contain relationships as well as logical axioms to other ontologies such the Gene Ontology.
Application and utility
MPATH was originally devised for the annotation of histopathological images from mice but is now being used much more widely in the recording of diagnostic and phenotypic data from both mice and humans, and in the construction of logical definitions for phenotype and disease ontologies. We discuss the use of MPATH to generate cross-products with qualifiers derived from a subset of the Phenotype and Trait Ontology (PATO) and its application to large-scale high-throughput phenotyping studies. MPATH provides a largely species-agnostic ontology for the descriptions of anatomic pathology, which can be applied to most amniotes and is now finding extensive use in species other than mice. It enables investigators to interrogate large datasets at a variety of depths, use semantic analysis to identify the relations between diseases in different species and integrate pathology data with other data types, such as pharmacogenomics.
PMCID: PMC3851164  PMID: 24033988
Pathology; Ontology; Disease; Mouse; Phenotype
7.  Identifying aberrant pathways through integrated analysis of knowledge in pharmacogenomics 
Bioinformatics  2012;28(16):2169-2175.
Motivation: Many complex diseases are the result of abnormal pathway functions instead of single abnormalities. Disease diagnosis and intervention strategies must target these pathways while minimizing the interference with normal physiological processes. Large-scale identification of disease pathways and chemicals that may be used to perturb them requires the integration of information about drugs, genes, diseases and pathways. This information is currently distributed over several pharmacogenomics databases. An integrated analysis of the information in these databases can reveal disease pathways and facilitate novel biomedical analyses.
Results: We demonstrate how to integrate pharmacogenomics databases through integration of the biomedical ontologies that are used as meta-data in these databases. The additional background knowledge in these ontologies can then be used to enable novel analyses. We identify disease pathways using a novel multi-ontology enrichment analysis over the Human Disease Ontology, and we identify significant associations between chemicals and pathways using an enrichment analysis over a chemical ontology. The drug–pathway and disease–pathway associations are a valuable resource for research in disease and drug mechanisms and can be used to improve computational drug repurposing.
PMCID: PMC3493115  PMID: 22711793
8.  Semantic integration of physiology phenotypes with an application to the Cellular Phenotype Ontology 
Bioinformatics  2012;28(13):1783-1789.
Motivation: The systematic observation of phenotypes has become a crucial tool of functional genomics, and several large international projects are currently underway to identify and characterize the phenotypes that are associated with genotypes in several species. To integrate phenotype descriptions within and across species, phenotype ontologies have been developed. Applying ontologies to unify phenotype descriptions in the domain of physiology has been a particular challenge due to the high complexity of the underlying domain.
Results: In this study, we present the outline of a theory and its implementation for an ontology of physiology-related phenotypes. We provide a formal description of process attributes and relate them to the attributes of their temporal parts and participants. We apply our theory to create the Cellular Phenotype Ontology (CPO). The CPO is an ontology of morphological and physiological phenotypic characteristics of cells, cell components and cellular processes. Its prime application is to provide terms and uniform definition patterns for the annotation of cellular phenotypes. The CPO can be used for the annotation of observed abnormalities in domains, such as systems microscopy, in which cellular abnormalities are observed and for which no phenotype ontology has been created.
Availability and implementation: The CPO and the source code we generated to create the CPO are freely available on
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3381966  PMID: 22539675
9.  MouseFinder: candidate disease genes from mouse phenotype data 
Human Mutation  2012;33(5):858-866.
Mouse phenotype data represents a valuable resource for the identification of disease-associated genes, especially where the molecular basis is unknown and there is no clue to the candidate gene’s function, pathway involvement or expression pattern. However, until recently these data have not been systematically used due to difficulties in mapping between clinical features observed in humans and mouse phenotype annotations. Here, we describe a semantic approach to solve this problem and demonstrate highly significant recall of known disease-gene associations and orthology relationships. A web application (MouseFinder; has been developed to allow users to search the results of our whole-phenome comparison of human and mouse. We demonstrate its use in identifying ARTN as a strong candidate gene within the 1p34.1-p32 mapped locus for a hereditary form of ptosis.
PMCID: PMC3327758  PMID: 22331800
phenotype; candidate disease genes; model organism; mouse
10.  Mouse genetic and phenotypic resources for human genetics 
Human mutation  2012;33(5):826-836.
The use of model organisms to provide information on gene function has proved to be a powerful approach to our understanding of both human disease and fundamental mammalian biology. Large-scale community projects using mice, based on forward and reverse genetics, and now the pan-genomic phenotyping efforts of the International Mouse Phenotyping Consortium (IMPC), are generating resources on an unprecedented scale which will be extremely valuable to human genetics and medicine. We discuss the nature and availability of data, mice and ES cells from these large-scale programmes, the use of these resources to help prioritise and validate candidate genes in human genetic association studies, and how they can improve our understanding of the underlying pathobiology of human disease.
PMCID: PMC3473354  PMID: 22422677
mouse; genetics; phenotyping; human; ontology; GWAS; CNV; database
11.  Systematic Analysis of Experimental Phenotype Data Reveals Gene Functions 
PLoS ONE  2013;8(4):e60847.
High-throughput phenotyping projects in model organisms have the potential to improve our understanding of gene functions and their role in living organisms. We have developed a computational, knowledge-based approach to automatically infer gene functions from phenotypic manifestations and applied this approach to yeast (Saccharomyces cerevisiae), nematode worm (Caenorhabditis elegans), zebrafish (Danio rerio), fruitfly (Drosophila melanogaster) and mouse (Mus musculus) phenotypes. Our approach is based on the assumption that, if a mutation in a gene leads to a phenotypic abnormality in a process , then must have been involved in , either directly or indirectly. We systematically analyze recorded phenotypes in animal models using the formal definitions created for phenotype ontologies. We evaluate the validity of the inferred functions manually and by demonstrating a significant improvement in predicting genetic interactions and protein-protein interactions based on functional similarity. Our knowledge-based approach is generally applicable to phenotypes recorded in model organism databases, including phenotypes from large-scale, high throughput community projects whose primary mode of dissemination is direct publication on-line rather than in the literature.
PMCID: PMC3628905  PMID: 23626672
12.  Representing physiological processes and their participants with PhysioMaps 
Journal of Biomedical Semantics  2013;4(Suppl 1):S2.
As the number and size of biological knowledge resources for physiology grows, researchers need improved tools for searching and integrating knowledge and physiological models. Unfortunately, current resources—databases, simulation models, and knowledge bases, for example—are only occasionally and idiosyncratically explicit about the semantics of the biological entities and processes that they describe.
We present a formal approach, based on the semantics of biophysics as represented in the Ontology of Physics for Biology, that divides physiological knowledge into three partitions: structural knowledge, process knowledge and biophysical knowledge. We then computationally integrate these partitions across multiple structural and biophysical domains as computable ontologies by which such knowledge can be archived, reused, and displayed. Our key result is the semi-automatic parsing of biosimulation model code into PhysioMaps that can be displayed and interrogated for qualitative responses to hypothetical perturbations.
Strong, explicit semantics of biophysics can provide a formal, computational basis for integrating physiological knowledge in a manner that supports visualization of the physiological content of biosimulation models across spatial scales and biophysical domains.
PMCID: PMC3632997  PMID: 23735231
13.  An integrative, translational approach to understanding rare and orphan genetically based diseases 
Interface Focus  2013;3(2):20120055.
PhenomeNet is an approach for integrating phenotypes across species and identifying candidate genes for genetic diseases based on the similarity between a disease and animal model phenotypes. In contrast to ‘guilt-by-association’ approaches, PhenomeNet relies exclusively on the comparison of phenotypes to suggest candidate genes, and can, therefore, be applied to study the molecular basis of rare and orphan diseases for which the molecular basis is unknown. In addition to disease phenotypes from the Online Mendelian Inheritance in Man (OMIM) database, we have now integrated the clinical signs from Orphanet into PhenomeNet. We demonstrate that our approach can efficiently identify known candidate genes for genetic diseases in Orphanet and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology. Our results demonstrate that integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases.
PMCID: PMC3638468  PMID: 23853703
phenotype; animal model; rare disease; orphan disease; Orphanet; biomedical informatics
14.  Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish 
Disease Models & Mechanisms  2012;6(2):358-372.
Numerous disease syndromes are associated with regions of copy number variation (CNV) in the human genome and, in most cases, the pathogenicity of the CNV is thought to be related to altered dosage of the genes contained within the affected segment. However, establishing the contribution of individual genes to the overall pathogenicity of CNV syndromes is difficult and often relies on the identification of potential candidates through manual searches of the literature and online resources. We describe here the development of a computational framework to comprehensively search phenotypic information from model organisms and single-gene human hereditary disorders, and thus speed the interpretation of the complex phenotypes of CNV disorders. There are currently more than 5000 human genes about which nothing is known phenotypically but for which detailed phenotypic information for the mouse and/or zebrafish orthologs is available. Here, we present an ontology-based approach to identify similarities between human disease manifestations and the mutational phenotypes in characterized model organism genes; this approach can therefore be used even in cases where there is little or no information about the function of the human genes. We applied this algorithm to detect candidate genes for 27 recurrent CNV disorders and identified 802 gene-phenotype associations, approximately half of which involved genes that were previously reported to be associated with individual phenotypic features and half of which were novel candidates. A total of 431 associations were made solely on the basis of model organism phenotype data. Additionally, we observed a striking, statistically significant tendency for individual disease phenotypes to be associated with multiple genes located within a single CNV region, a phenomenon that we denote as pheno-clustering. Many of the clusters also display statistically significant similarities in protein function or vicinity within the protein-protein interaction network. Our results provide a basis for understanding previously un-interpretable genotype-phenotype correlations in pathogenic CNVs and for mobilizing the large amount of model organism phenotype data to provide insights into human genetic disorders.
PMCID: PMC3597018  PMID: 23104991
15.  The Units Ontology: a tool for integrating units of measurement in science 
Units are basic scientific tools that render meaning to numerical data. Their standardization and formalization caters for the report, exchange, process, reproducibility and integration of quantitative measurements. Ontologies are means that facilitate the integration of data and knowledge allowing interoperability and semantic information processing between diverse biomedical resources and domains. Here, we present the Units Ontology (UO), an ontology currently being used in many scientific resources for the standardized description of units of measurements.
PMCID: PMC3468815  PMID: 23060432
16.  Quantitative comparison of mapping methods between Human and Mammalian Phenotype Ontology 
Journal of Biomedical Semantics  2012;3(Suppl 2):S1.
Researchers use animal studies to better understand human diseases. In recent years, large-scale phenotype studies such as Phenoscape and EuroPhenome have been initiated to identify genetic causes of a species' phenome. Species-specific phenotype ontologies are required to capture and report about all findings and to automatically infer results relevant to human diseases. The integration of the different phenotype ontologies into a coherent framework is necessary to achieve interoperability for cross-species research.
Here, we investigate the quality and completeness of two different methods to align the Human Phenotype Ontology and the Mammalian Phenotype Ontology. The first method combines lexical matching with inference over the ontologies' taxonomic structures, while the second method uses a mapping algorithm based on the formal definitions of the ontologies. Neither method could map all concepts. Despite the formal definitions method provides mappings for more concepts than does the lexical matching method, it does not outperform the lexical matching in a biological use case. Our results suggest that combining both approaches will yield a better mappings in terms of completeness, specificity and application purposes.
PMCID: PMC3448526  PMID: 23046555
17.  Ontology-based cross-species integration and analysis of Saccharomyces cerevisiae phenotypes 
Journal of Biomedical Semantics  2012;3(Suppl 2):S6.
Ontologies are widely used in the biomedical community for annotation and integration of databases. Formal definitions can relate classes from different ontologies and thereby integrate data across different levels of granularity, domains and species. We have applied this methodology to the Ascomycete Phenotype Ontology (APO), enabling the reuse of various orthogonal ontologies and we have converted the phenotype associated data found in the SGD following our proposed patterns. We have integrated the resulting data in the cross-species phenotype network PhenomeNET, and we make both the cross-species integration of yeast phenotypes and a similarity-based comparison of yeast phenotypes across species available in the PhenomeBrowser. Furthermore, we utilize our definitions and the yeast phenotype annotations to suggest novel functional annotations of gene products in yeast.
PMCID: PMC3448529  PMID: 23046642
18.  Evaluation of research in biomedical ontologies 
Briefings in Bioinformatics  2012;14(6):696-712.
Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research.
PMCID: PMC3888109  PMID: 22962340
biomedical ontology; quantitative biology; ontology evaluation; evaluation criteria; ontology-based applications
19.  Entity/Quality-Based Logical Definitions for the Human Skeletal Phenome using PATO 
Conference Proceedings  2009;2009:7069-7072.
This paper describes an approach to providing computer-interpretable logical definitions for the terms of the Human Phenotype Ontology (HPO) using PATO, the ontology of phenotypic qualities, to link terms of the HPO to the anatomic and other entities that are affected by abnormal phenotypic qualities. This approach will allow improved computerized reasoning as well as a facility to compare phenotypes between different species. The PATO mapping will also provide direct links from phenotypic abnormalities and underlying anatomic structures encoded using the Foundational Model of Anatomy, which will be a valuable resource for computational investigations of the links between anatomical components and concepts representing diseases with abnormal phenotypes and associated genes.
PMCID: PMC3398700  PMID: 19964203
20.  Improving Disease Gene Prioritization by Comparing the Semantic Similarity of Phenotypes in Mice with Those of Human Diseases 
PLoS ONE  2012;7(6):e38937.
Despite considerable progress in understanding the molecular origins of hereditary human diseases, the molecular basis of several thousand genetic diseases still remains unknown. High-throughput phenotype studies are underway to systematically assess the phenotype outcome of targeted mutations in model organisms. Thus, comparing the similarity between experimentally identified phenotypes and the phenotypes associated with human diseases can be used to suggest causal genes underlying a disease. In this manuscript, we present a method for disease gene prioritization based on comparing phenotypes of mouse models with those of human diseases. For this purpose, either human disease phenotypes are “translated” into a mouse-based representation (using the Mammalian Phenotype Ontology), or mouse phenotypes are “translated” into a human-based representation (using the Human Phenotype Ontology). We apply a measure of semantic similarity and rank experimentally identified phenotypes in mice with respect to their phenotypic similarity to human diseases. Our method is evaluated on manually curated and experimentally verified gene–disease associations for human and for mouse. We evaluate our approach using a Receiver Operating Characteristic (ROC) analysis and obtain an area under the ROC curve of up to . Furthermore, we are able to confirm previous results that the Vax1 gene is involved in Septo-Optic Dysplasia and suggest Gdf6 and Marcks as further potential candidates. Our method significantly outperforms previous phenotype-based approaches of prioritizing gene–disease associations. To enable the adaption of our method to the analysis of other phenotype data, our software and prioritization results are freely available under a BSD licence at Furthermore, our method has been integrated in PhenomeNET and the results can be explored using the PhenomeBrowser at
PMCID: PMC3375301  PMID: 22719993
21.  A common layer of interoperability for biomedical ontologies based on OWL EL 
Bioinformatics  2011;27(7):1001-1008.
Motivation: Ontologies are essential in biomedical research due to their ability to semantically integrate content from different scientific databases and resources. Their application improves capabilities for querying and mining biological knowledge. An increasing number of ontologies is being developed for this purpose, and considerable effort is invested into formally defining them in order to represent their semantics explicitly. However, current biomedical ontologies do not facilitate data integration and interoperability yet, since reasoning over these ontologies is very complex and cannot be performed efficiently or is even impossible. We propose the use of less expressive subsets of ontology representation languages to enable efficient reasoning and achieve the goal of genuine interoperability between ontologies.
Results: We present and evaluate EL Vira, a framework that transforms OWL ontologies into the OWL EL subset, thereby enabling the use of tractable reasoning. We illustrate which OWL constructs and inferences are kept and lost following the conversion and demonstrate the performance gain of reasoning indicated by the significant reduction of processing time. We applied EL Vira to the open biomedical ontologies and provide a repository of ontologies resulting from this conversion. EL Vira creates a common layer of ontological interoperability that, for the first time, enables the creation of software solutions that can employ biomedical ontologies to perform inferences and answer complex queries to support scientific analyses.
Availability and implementation: The EL Vira software is available from and converted OBO ontologies and their mappings are available from
PMCID: PMC3065691  PMID: 21343142
22.  Uberon, an integrative multi-species anatomy ontology 
Genome Biology  2012;13(1):R5.
We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at
PMCID: PMC3334586  PMID: 22293552
23.  Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice 
Disease Models & Mechanisms  2011;5(1):19-25.
Recent advances in gene knockout techniques and the in vivo analysis of mutant mice, together with the advent of large-scale projects for systematic mouse mutagenesis and genome-wide phenotyping, have allowed the creation of platforms for the most complete and systematic analysis of gene function ever undertaken in a vertebrate. The development of high-throughput phenotyping pipelines for these and other large-scale projects allows investigators to search and integrate large amounts of directly comparable phenotype data from many mutants, on a genomic scale, to help develop and test new hypotheses about the origins of disease and the normal functions of genes in the organism. Histopathology has a venerable history in the understanding of the pathobiology of human and animal disease, and presents complementary advantages and challenges to in vivo phenotyping. In this review, we present evidence for the unique contribution that histopathology can make to a large-scale phenotyping effort, using examples from past and current programmes at Lexicon Pharmaceuticals and The Jackson Laboratory, and critically assess the role of histopathology analysis in high-throughput phenotyping pipelines.
PMCID: PMC3255539  PMID: 22028326
24.  Improving ontologies by automatic reasoning and evaluation of logical definitions 
BMC Bioinformatics  2011;12:418.
Ontologies are widely used to represent knowledge in biomedicine. Systematic approaches for detecting errors and disagreements are needed for large ontologies with hundreds or thousands of terms and semantic relationships. A recent approach of defining terms using logical definitions is now increasingly being adopted as a method for quality control as well as for facilitating interoperability and data integration.
We show how automated reasoning over logical definitions of ontology terms can be used to improve ontology structure. We provide the Java software package GULO (Getting an Understanding of LOgical definitions), which allows fast and easy evaluation for any kind of logically decomposed ontology by generating a composite OWL ontology from appropriate subsets of the referenced ontologies and comparing the inferred relationships with the relationships asserted in the target ontology. As a case study we show how to use GULO to evaluate the logical definitions that have been developed for the Mammalian Phenotype Ontology (MPO).
Logical definitions of terms from biomedical ontologies represent an important resource for error and disagreement detection. GULO gives ontology curators a fast and simple tool for validation of their work.
PMCID: PMC3224779  PMID: 22032770
25.  Integrating systems biology models and biomedical ontologies 
BMC Systems Biology  2011;5:124.
Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology.
We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models.
We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.
PMCID: PMC3170340  PMID: 21835028

Results 1-25 (30)