Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Integrating precision medicine in the study and clinical treatment of a severely mentally ill person 
PeerJ  2013;1:e177.
Background. In recent years, there has been an explosion in the number of technical and medical diagnostic platforms being developed. This has greatly improved our ability to more accurately, and more comprehensively, explore and characterize human biological systems on the individual level. Large quantities of biomedical data are now being generated and archived in many separate research and clinical activities, but there exists a paucity of studies that integrate the areas of clinical neuropsychiatry, personal genomics and brain-machine interfaces.
Methods. A single person with severe mental illness was implanted with the Medtronic Reclaim® Deep Brain Stimulation (DBS) Therapy device for Obsessive Compulsive Disorder (OCD), targeting his nucleus accumbens/anterior limb of the internal capsule. Programming of the device and psychiatric assessments occurred in an outpatient setting for over two years. His genome was sequenced and variants were detected in the Illumina Whole Genome Sequencing Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory.
Results. We report here the detailed phenotypic characterization, clinical-grade whole genome sequencing (WGS), and two-year outcome of a man with severe OCD treated with DBS. Since implantation, this man has reported steady improvement, highlighted by a steady decline in his Yale-Brown Obsessive Compulsive Scale (YBOCS) score from ∼38 to a score of ∼25. A rechargeable Activa RC neurostimulator battery has been of major benefit in terms of facilitating a degree of stability and control over the stimulation. His psychiatric symptoms reliably worsen within hours of the battery becoming depleted, thus providing confirmatory evidence for the efficacy of DBS for OCD in this person. WGS revealed that he is a heterozygote for the p.Val66Met variant in BDNF, encoding a member of the nerve growth factor family, and which has been found to predispose carriers to various psychiatric illnesses. He carries the p.Glu429Ala allele in methylenetetrahydrofolate reductase (MTHFR) and the p.Asp7Asn allele in ChAT, encoding choline O-acetyltransferase, with both alleles having been shown to confer an elevated susceptibility to psychoses. We have found thousands of other variants in his genome, including pharmacogenetic and copy number variants. This information has been archived and offered to this person alongside the clinical sequencing data, so that he and others can re-analyze his genome for years to come.
Conclusions. To our knowledge, this is the first study in the clinical neurosciences that integrates detailed neuropsychiatric phenotyping, deep brain stimulation for OCD and clinical-grade WGS with management of genetic results in the medical treatment of one person with severe mental illness. We offer this as an example of precision medicine in neuropsychiatry including brain-implantable devices and genomics-guided preventive health care.
PMCID: PMC3792182  PMID: 24109560
Genomics; Deep brain stimulation; Whole genome sequencing; Ethics; Neurosurgery; Obsessive compulsive disorder
2.  Evolution of the Sequence Ontology terms and relationships 
The Sequence Ontology is an established ontology, with a large user community, for the purpose of genomic annotation. We are reforming the ontology to provide better terms and relationships to describe the features of biological sequence, for both genomic and derived sequence. The SO is working within the guidelines of the OBO Foundry to provide interoperability between SO and the other related OBO ontologies. Here we report changes and improvements made to SO including new relationships to better define the mereological, spatial and temporal aspects of biological sequence.
PMCID: PMC3052763  PMID: 20226267
Sequence Ontology; biomedical ontology; genome annotation
3.  Novel sequence feature variant type analysis of the HLA genetic association in systemic sclerosis 
Human Molecular Genetics  2009;19(4):707-719.
We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.
PMCID: PMC2807365  PMID: 19933168
4.  A standard variation file format for human genome sequences 
Genome Biology  2010;11(8):R88.
Here we describe the Genome Variation Format (GVF) and the 10Gen dataset. GVF, an extension of Generic Feature Format version 3 (GFF3), is a simple tab-delimited format for DNA variant files, which uses Sequence Ontology to describe genome variation data. The 10Gen dataset, ten human genomes in GVF format, is freely available for community analysis from the Sequence Ontology website and from an Amazon elastic block storage (EBS) snapshot for use in Amazon's EC2 cloud computing environment.
PMCID: PMC2945790  PMID: 20796305
5.  The Protein Feature Ontology: A Tool for the Unification of Protein Annotations 
Bioinformatics (Oxford, England)  2008;24(23):2767-2772.
The advent of sequencing and structural genomics projects has provided a dramatic boost in the number of protein structures and sequences. Due to the high-throughput nature of these projects, many of the molecules are uncharacterised and their functions unknown. This, in turn, has led to the need for a greater number and diversity of tools and databases providing annotation through transfer based on homology and prediction methods. Though many such tools to annotate protein sequence and structure exist, they are spread throughout the world, often with dedicated individual web pages. This situation does not provide a consensus view of the data and hinders comparison between methods. Integration of these methods is needed. So far this has not been possible since there was no common vocabulary available that could be used as a standard language. A variety of terms could be used to describe any particular feature ranging from different spellings to completely different terms. The Protein Feature Ontology ( is a structured controlled vocabulary for features of a protein sequence or structure. It provides a common language for tools and methods to use, so that integration and comparison of their annotations is possible. The Protein Feature Ontology comprises approximately 100 positional terms (located in a particular region of the sequence), which have been integrated into the Sequence Ontology (SO). 40 non-positional terms which describe general protein properties have also been defined and, in addition, post-translational modifications are described by using an already existing ontology, the Protein Modification Ontology (MOD). The Protein Feature Ontology has been used by the BioSapiens Network of Excellence, a consortium comprising 19 partner sites in 14 European countries generating over 150 distinct annotation types for protein sequences and structures.
PMCID: PMC2912506  PMID: 18936051
6.  SOBA: sequence ontology bioinformatics analysis 
Nucleic Acids Research  2010;38(Web Server issue):W161-W164.
The advent of cheaper, faster sequencing technologies has pushed the task of sequence annotation from the exclusive domain of large-scale multi-national sequencing projects to that of research laboratories and small consortia. The bioinformatics burden placed on these laboratories, some with very little programming experience can be daunting. Fortunately, there exist software libraries and pipelines designed with these groups in mind, to ease the transition from an assembled genome to an annotated and accessible genome resource. We have developed the Sequence Ontology Bioinformatics Analysis (SOBA) tool to provide a simple statistical and graphical summary of an annotated genome. We envisage its use during annotation jamborees, genome comparison and for use by developers for rapid feedback during annotation software development and testing. SOBA also provides annotation consistency feedback to ensure correct use of terminology within annotations, and guides users to add new terms to the Sequence Ontology when required. SOBA is available at
PMCID: PMC2896117  PMID: 20494974
7.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration 
Nature biotechnology  2007;25(11):1251.
The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved.
PMCID: PMC2814061  PMID: 17989687
8.  Quantitative measures for the management and comparison of annotated genomes 
BMC Bioinformatics  2009;10:67.
The ever-increasing number of sequenced and annotated genomes has made management of their annotations a significant undertaking, especially for large eukaryotic genomes containing many thousands of genes. Typically, changes in gene and transcript numbers are used to summarize changes from release to release, but these measures say nothing about changes to individual annotations, nor do they provide any means to identify annotations in need of manual review.
In response, we have developed a suite of quantitative measures to better characterize changes to a genome's annotations between releases, and to prioritize problematic annotations for manual review. We have applied these measures to the annotations of five eukaryotic genomes over multiple releases – H. sapiens, M. musculus, D. melanogaster, A. gambiae, and C. elegans.
Our results provide the first detailed, historical overview of how these genomes' annotations have changed over the years, and demonstrate the usefulness of these measures for genome annotation management.
PMCID: PMC2653490  PMID: 19236712
9.  The Sequence Ontology: a tool for the unification of genome annotations 
Genome Biology  2005;6(5):R44.
The goal of the Sequence Ontology (SO) project is to produce a structured controlled vocabulary with a common set of terms and definitions for parts of a genomic annotation, and to describe the relationships among them. Details of SO construction, design and use, particularly with regard to part-whole relationships are discussed and the practical utility of SO is demonstrated for a set of genome annotations from Drosophila melanogaster.
The Sequence Ontology (SO) is a structured controlled vocabulary for the parts of a genomic annotation. SO provides a common set of terms and definitions that will facilitate the exchange, analysis and management of genomic data. Because SO treats part-whole relationships rigorously, data described with it can become substrates for automated reasoning, and instances of sequence features described by the SO can be subjected to a group of logical operations termed extensional mereology operators.
PMCID: PMC1175956  PMID: 15892872
10.  Sequence Ontology Annotation Guide 
This Sequence Ontology (SO) [13] aims to unify the way in which we describe sequence annotations, by providing a controlled vocabulary of terms and the relationships between them. Using SO terms to label the parts of sequence annotations greatly facilitates downstream analyses of their contents, as it ensures that annotations produced by different groups conform to a single standard. This greatly facilitates analyses of annotation contents and characteristics, e.g. comparisons of UTRs, alternative splicing, etc. Because SO also specifies the relationships between features, e.g. part_of, kind_of, annotations described with SO terms are also better substrates for validation and visualization software.
This document provides a step-by-step guide to producing a SO compliant file describing a sequence annotation. We illustrate this by using an annotated gene as an example. First we show where the terms needed to describe the gene's features are located in SO and their relationships to one another. We then show line by line how to format the file to construct a SO compliant annotation of this gene.
PMCID: PMC2447471  PMID: 18629179

Results 1-10 (10)