PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (43)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  A gene ontology inferred from molecular networks 
Nature biotechnology  2013;31(1):10.1038/nbt.2463.
Ontologies have proven very useful for capturing knowledge as a hierarchy of terms and their interrelationships. In biology a major challenge has been to construct ontologies of gene function given incomplete biological knowledge and inconsistencies in how this knowledge is manually curated. Here we show that large networks of gene and protein interactions in Saccharomyces cerevisiae can be used to infer an ontology whose coverage and power are equivalent to those of the manually curated Gene Ontology (GO). The network-extracted ontology (NeXO) contains 4,123 biological terms and 5,766 term-term relations, capturing 58% of known cellular components. We also explore robust NeXO terms and term relations that were initially not cataloged in GO, a number of which have now been added based on our analysis. Using quantitative genetic interaction profiling and chemogenomics, we find further support for many of the uncharacterized terms identified by NeXO, including multisubunit structures related to protein trafficking or mitochondrial function. This work enables a shift from using ontologies to evaluate data to using data to construct and evaluate ontologies.
doi:10.1038/nbt.2463
PMCID: PMC3654867  PMID: 23242164
2.  The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now 
G3: Genes|Genomes|Genetics  2013;4(3):389-398.
The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.
doi:10.1534/g3.113.008995
PMCID: PMC3962479  PMID: 24374639
Saccharomyces cerevisiae; model organism; reference sequence; genome release; S288C
5.  Saccharomyces genome database provides new regulation data 
Nucleic Acids Research  2013;42(D1):D717-D725.
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the community resource for genomic, gene and protein information about the budding yeast Saccharomyces cerevisiae, containing a variety of functional information about each yeast gene and gene product. We have recently added regulatory information to SGD and present it on a new tabbed section of the Locus Summary entitled ‘Regulation’. We are compiling transcriptional regulator–target gene relationships, which are curated from the literature at SGD or imported, with permission, from the YEASTRACT database. For nearly every S. cerevisiae gene, the Regulation page displays a table of annotations showing the regulators of that gene, and a graphical visualization of its regulatory network. For genes whose products act as transcription factors, the Regulation page also shows a table of their target genes, accompanied by a Gene Ontology enrichment analysis of the biological processes in which those genes participate. We additionally synthesize information from the literature for each transcription factor in a free-text Regulation Summary, and provide other information relevant to its regulatory function, such as DNA binding site motifs and protein domains. All of the regulation data are available for querying, analysis and download via YeastMine, the InterMine-based data warehouse system in use at SGD.
doi:10.1093/nar/gkt1158
PMCID: PMC3965049  PMID: 24265222
6.  A guide to best practices for Gene Ontology (GO) manual annotation 
The Gene Ontology Consortium (GOC) is a community-based bioinformatics project that classifies gene product function through the use of structured controlled vocabularies. A fundamental application of the Gene Ontology (GO) is in the creation of gene product annotations, evidence-based associations between GO definitions and experimental or sequence-based analysis. Currently, the GOC disseminates 126 million annotations covering >374 000 species including all the kingdoms of life. This number includes two classes of GO annotations: those created manually by experienced biocurators reviewing the literature or by examination of biological data (1.1 million annotations covering 2226 species) and those generated computationally via automated methods. As manual annotations are often used to propagate functional predictions between related proteins within and between genomes, it is critical to provide accurate consistent manual annotations. Toward this goal, we present here the conventions defined by the GOC for the creation of manual annotation. This guide represents the best practices for manual annotation as established by the GOC project over the past 12 years. We hope this guide will encourage research communities to annotate gene products of their interest to enhance the corpus of GO annotations available to all.
Database URL: http://www.geneontology.org
doi:10.1093/database/bat054
PMCID: PMC3706743  PMID: 23842463
7.  InterMOD: integrated data and tools for the unification of model organism research 
Scientific Reports  2013;3:1802.
Model organisms are widely used for understanding basic biology, and have significantly contributed to the study of human disease. In recent years, genomic analysis has provided extensive evidence of widespread conservation of gene sequence and function amongst eukaryotes, allowing insights from model organisms to help decipher gene function in a wider range of species. The InterMOD consortium is developing an infrastructure based around the InterMine data warehouse system to integrate genomic and functional data from a number of key model organisms, leading the way to improved cross-species research. So far including budding yeast, nematode worm, fruit fly, zebrafish, rat and mouse, the project has set up data warehouses, synchronized data models, and created analysis tools and links between data from different species. The project unites a number of major model organism databases, improving both the consistency and accessibility of comparative research, to the benefit of the wider scientific community.
doi:10.1038/srep01802
PMCID: PMC3647165  PMID: 23652793
8.  The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database 
The first completed eukaryotic genome sequence was that of the yeast Saccharomyces cerevisiae, and the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the original model organism database. SGD remains the authoritative community resource for the S. cerevisiae reference genome sequence and its annotation, and continues to provide comprehensive biological information correlated with S. cerevisiae genes and their products. A diverse set of yeast strains have been sequenced to explore commercial and laboratory applications, and a brief history of those strains is provided. The publication of these new genomes has motivated the creation of new tools, and SGD will annotate and provide comparative analyses of these sequences, correlating changes with variations in strain phenotypes and protein function. We are entering a new era at SGD, as we incorporate these new sequences and make them accessible to the scientific community, all in an effort to continue in our mission of educating researchers and facilitating discovery.
Database URL: http://www.yeastgenome.org/
doi:10.1093/database/bat012
PMCID: PMC3595989  PMID: 23487186
9.  The YeastGenome app: the Saccharomyces Genome Database at your fingertips 
The Saccharomyces Genome Database (SGD) is a scientific database that provides researchers with high-quality curated data about the genes and gene products of Saccharomyces cerevisiae. To provide instant and easy access to this information on mobile devices, we have developed YeastGenome, a native application for the Apple iPhone and iPad. YeastGenome can be used to quickly find basic information about S. cerevisiae genes and chromosomal features regardless of internet connectivity. With or without network access, you can view basic information and Gene Ontology annotations about a gene of interest by searching gene names and gene descriptions or by browsing the database within the app to find the gene of interest. With internet access, the app provides more detailed information about the gene, including mutant phenotypes, references and protein and genetic interactions, as well as provides hyperlinks to retrieve detailed information by showing SGD pages and views of the genome browser. SGD provides online help describing basic ways to navigate the mobile version of SGD, highlights key features and answers frequently asked questions related to the app. The app is available from iTunes (http://itunes.com/apps/yeastgenome). The YeastGenome app is provided freely as a service to our community, as part of SGD’s mission to provide free and open access to all its data and annotations.
doi:10.1093/database/bat004
PMCID: PMC3567487  PMID: 23396302
10.  Expanding Yeast Knowledge Online 
Yeast (Chichester, England)  1998;14(16):1453-1469.
The completion of the Saccharomyces cerevisiae genome sequencing project11 and the continued development of improved technology for large-scale genome analysis have led to tremendous growth in the amount of new yeast genetics and molecular biology data. Efficient organization, presentation, and dissemination of this information are essential if researchers are to exploit this knowledge. In addition, the development of tools that provide efficient analysis of this information and link it with pertinent information from other systems is becoming increasingly important at a time when the complete genome sequences of other organisms are becoming available. The aim of this review is to familiarize biologists with the type of data resources currently available on the World Wide Web (WWW).
doi:10.1002/(SICI)1097-0061(199812)14:16<1453::AID-YEA348>3.0.CO;2-G
PMCID: PMC3037831  PMID: 9885151
World Wide Web; Saccharomyces Genome Database; Munich Information Center for Protein Sequences; Yeast Protein Database
11.  In the beginning there was babble… 
Autophagy  2012;8(8):1165-1167.
“Go to, let us go down, and there confound their language, that they may not understand one another's speech. …Therefore is the name of it called Babel; because the Lord did there confound the language of all the earth…”
Genesis 11:7,9
doi:10.4161/auto.20665
PMCID: PMC3625114  PMID: 22836666
Arabidopsis; autophagy; Caenorhabditis; genes; human; lysosome; mammalian; mouse; nomenclature; rat; stress; vacuole; Xenopus; yeast; zebrafish
12.  Considerations for creating and annotating the budding yeast Genome Map at SGD: a progress report 
The Saccharomyces Genome Database (SGD) is compiling and annotating a comprehensive catalogue of functional sequence elements identified in the budding yeast genome. Recent advances in deep sequencing technologies have enabled for example, global analyses of transcription profiling and assembly of maps of transcription factor occupancy and higher order chromatin organization, at nucleotide level resolution. With this growing influx of published genome-scale data, come new challenges for their storage, display, analysis and integration. Here, we describe SGD's progress in the creation of a consolidated resource for genome sequence elements in the budding yeast, the considerations taken in its design and the lessons learned thus far. The data within this collection can be accessed at http://browse.yeastgenome.org and downloaded from http://downloads.yeastgenome.org.
Database URL: http://www.yeastgenome.org
doi:10.1093/database/bar057
PMCID: PMC3308148  PMID: 22434826
13.  CvManGO, a method for leveraging computational predictions to improve literature-based Gene Ontology annotations 
The set of annotations at the Saccharomyces Genome Database (SGD) that classifies the cellular function of S. cerevisiae gene products using Gene Ontology (GO) terms has become an important resource for facilitating experimental analysis. In addition to capturing and summarizing experimental results, the structured nature of GO annotations allows for functional comparison across organisms as well as propagation of functional predictions between related gene products. Due to their relevance to many areas of research, ensuring the accuracy and quality of these annotations is a priority at SGD. GO annotations are assigned either manually, by biocurators extracting experimental evidence from the scientific literature, or through automated methods that leverage computational algorithms to predict functional information. Here, we discuss the relationship between literature-based and computationally predicted GO annotations in SGD and extend a strategy whereby comparison of these two types of annotation identifies genes whose annotations need review. Our method, CvManGO (Computational versus Manual GO annotations), pairs literature-based GO annotations with computational GO predictions and evaluates the relationship of the two terms within GO, looking for instances of discrepancy. We found that this method will identify genes that require annotation updates, taking an important step towards finding ways to prioritize literature review. Additionally, we explored factors that may influence the effectiveness of CvManGO in identifying relevant gene targets to find in particular those genes that are missing literature-supported annotations, but our survey found that there are no immediately identifiable criteria by which one could enrich for these under-annotated genes. Finally, we discuss possible ways to improve this strategy, and the applicability of this method to other projects that use the GO for curation.
Database URL: http://www.yeastgenome.org
doi:10.1093/database/bas001
PMCID: PMC3308158  PMID: 22434836
14.  Saccharomyces Genome Database: the genomics resource of budding yeast 
Nucleic Acids Research  2011;40(D1):D700-D705.
The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.
doi:10.1093/nar/gkr1029
PMCID: PMC3245034  PMID: 22110037
15.  Comparison of the Complete Protein Sets of Worm and Yeast: Orthology and Divergence 
Science (New York, N.Y.)  1998;282(5396):2022-2028.
Comparative analysis of predicted protein sequences encoded by the genomes of Caenorhabditis elegans and Saccharomyces cerevisiae suggests that most of the core biological functions are carried out by orthologous proteins (proteins of different species that can be traced back to a common ancestor) that occur in comparable numbers. The specialized processes of signal transduction and regulatory control that are unique to the multicellular worm appear to use novel proteins, many of which re-use conserved domains. Major expansion of the number of some of these domains seen in the worm may have contributed to the advent of multicellularity. The proteins conserved in yeast and worm are likely to have orthologs throughout eukaryotes; in contrast, the proteins unique to the worm may well define metazoans.
PMCID: PMC3057080  PMID: 9851918
16.  Genetic and physical maps of Saccharomyces cerevisiae 
Nature  1997;387(6632 Suppl):67-73.
Genetic and physical maps for the 16 chromosomes of Saccharomyces cerevisiae are presented. The genetic map is the result of 40 years of genetic analysis. The physical map was produced from the results of an international systematic sequencing effort. The data for the maps are accessible electronically from the Saccharomyces Genome Database (SGD: http://genome-www.stanford.edu/Saccharomyces/).
PMCID: PMC3057085  PMID: 9169866
17.  Functional annotations for the Saccharomyces cerevisiae genome: the knowns and the known unknowns 
Trends in microbiology  2009;17(7):286-294.
The quest to characterize each of the genes of the yeast Saccharomyces cerevisiae has propelled the development and application of novel high-throughput (HTP) experimental techniques. To handle the enormous amount of information generated by these techniques, new bioinformatics tools and resources are needed. Gene Ontology (GO) annotations curated by the Saccharomyces Genome Database (SGD) have facilitated the development of algorithms that analyze HTP data and help predict functions for poorly characterized genes in S. cerevisiae and other organisms. Here, we describe how published results are incorporated into GO annotations at SGD and why researchers can benefit from using these resources wisely to analyze their HTP data and predict gene functions.
doi:10.1016/j.tim.2009.04.005
PMCID: PMC3057094  PMID: 19577472
18.  Using computational predictions to improve literature-based Gene Ontology annotations: a feasibility study 
Annotation using Gene Ontology (GO) terms is one of the most important ways in which biological information about specific gene products can be expressed in a searchable, computable form that may be compared across genomes and organisms. Because literature-based GO annotations are often used to propagate functional predictions between related proteins, their accuracy is critically important. We present a strategy that employs a comparison of literature-based annotations with computational predictions to identify and prioritize genes whose annotations need review. Using this method, we show that comparison of manually assigned ‘unknown’ annotations in the Saccharomyces Genome Database (SGD) with InterPro-based predictions can identify annotations that need to be updated. A survey of literature-based annotations and computational predictions made by the Gene Ontology Annotation (GOA) project at the European Bioinformatics Institute (EBI) across several other databases shows that this comparison strategy could be used to maintain and improve the quality of GO annotations for other organisms besides yeast. The survey also shows that although GOA-assigned predictions are the most comprehensive source of functional information for many genomes, a large proportion of genes in a variety of different organisms entirely lack these predictions but do have manual annotations. This underscores the critical need for manually performed, literature-based curation to provide functional information about genes that are outside the scope of widely used computational methods. Thus, the combination of manual and computational methods is essential to provide the most accurate and complete functional annotation of a genome.
Database URL: http://www.yeastgenome.org
doi:10.1093/database/bar004
PMCID: PMC3067894  PMID: 21411447
19.  Mining experimental evidence of molecular function claims from the literature 
Bioinformatics (Oxford, England)  2007;23(23):3232-3240.
Motivation
The rate at which gene-related findings appear in the scientific literature makes it difficult if not impossible for biomedical scientists to keep fully informed and up to date. The importance of these findings argues for the development of automated methods that can find, extract and summarize this information. This article reports on methods for determining the molecular function claims that are being made in a scientific article, specifically those that are backed by experimental evidence.
Results
The most significant result is that for molecular function claims based on direct assays, our methods achieved recall of 70.7% and precision of 65.7%. Furthermore, our methods correctly identified in the text 44.6% of the specific molecular function claims backed up by direct assays, but with a precision of only 0.92%, a disappointing outcome that led to an examination of the different kinds of errors. These results were based on an analysis of 1823 articles from the literature of Saccharomyces cerevisiae (budding yeast).
Availability
The annotation files for S.cerevisiae are available from ftp://genome-ftp.stanford.edu/pub/yeast/data_download/literature_curation/gene_association.sgd.gz. The draft protocol vocabulary is available by request from the first author.
Contact
crangle@converspeech.com
doi:10.1093/bioinformatics/btm495
PMCID: PMC3041023  PMID: 17942445
20.  Yeast as a Model Organism 
Science (New York, N.Y.)  1997;277(5330):1259-1260.
PMCID: PMC3039837  PMID: 9297238
21.  Genome comparisons highlight similarity and diversity within the eukaryotic kingdoms 
In 2000, the number of completely sequenced eukaryotic genomes increased to four. The addition of Drosophila and Arabidopsis into this cohort permits additional insights into the processes that have shaped evolution. Analysis and comparisons of both completed genomes and partially sequenced genomes have already shed light on mechanisms such as gene duplication and gene loss that have long been hypothesized to be major forces in speciation. Indeed, duplicate gene pairs in Saccharomyces, Arabidopsis, Caenorhabditis and Drosophila are high: 30%, 60%, 48% and 40%, respectively. Evidence of horizontal gene-transfer, thought to be a major evolutionary force in bacteria, has been found in Arabidopsis. The release of the ‘first draft’ of the human genome sequence in 2000 heralds a new stage of biological study. Understanding the as-yet-unannotated human genome will be largely based on conclusions, techniques and tools developed during the analysis and comparison of the genome of these four model organisms.
PMCID: PMC3040119  PMID: 11166654
22.  Saccharomyces cerevisiae S288C genome annotation: a working hypothesis 
Yeast (Chichester, England)  2006;23(12):857-865.
The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data.
doi:10.1002/yea.1400
PMCID: PMC3040122  PMID: 17001629
S. cerevisiae; genome sequence; genome annotation; comparative genomics; exon/intron boundaries
23.  GO::TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes 
Bioinformatics (Oxford, England)  2004;20(18):3710-3715.
Summary
GO::TermFinder comprises a set of object-oriented Perl modules for accessing Gene Ontology (GO) information and evaluating and visualizing the collective annotation of a list of genes to GO terms. It can be used to draw conclusions from microarray and other biological data, calculating the statistical significance of each annotation. GO::TermFinder can be used on any system on which Perl can be run, either as a command line application, in single or batch mode, or as a web-based CGI script.
Availability
The full source code and documentation for GO::TermFinder are freely available from http://search.cpan.org/dist/GO-TermFinder/
Contact
sherlock@genome.stanford.edu
doi:10.1093/bioinformatics/bth456
PMCID: PMC3037731  PMID: 15297299
24.  Saccharomyces genome database: Underlying principles and organisation 
Briefings in bioinformatics  2004;5(1):9-22.
A scientific database can be a powerful tool for biologists in an era where large-scale genomic analysis, combined with smaller-scale scientific results, provides new insights into the roles of genes and their products in the cell. However, the collection and assimilation of data is, in itself, not enough to make a database useful. The data must be incorporated into the database and presented to the user in an intuitive and biologically significant manner. Most importantly, this presentation must be driven by the user’s point of view; that is, from a biological perspective. The success of a scientific database can therefore be measured by the response of its users – statistically, by usage numbers and, in a less quantifiable way, by its relationship with the community it serves and its ability to serve as a model for similar projects. Since its inception ten years ago, the Saccharomyces Genome Database (SGD) has seen a dramatic increase in its usage, has developed and maintained a positive working relationship with the yeast research community, and has served as a template for at least one other database. The success of SGD, as measured by these criteria, is due in large part to philosophies that have guided its mission and organisation since it was established in 1993. This paper aims to detail these philosophies and how they shape the organisation and presentation of the database.
PMCID: PMC3037832  PMID: 15153302
S. cerevisiae; database; genome-wide analysis; bioinformatics; yeast
25.  Gene Ontology: tool for the unification of biology 
Nature genetics  2000;25(1):25-29.
Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
doi:10.1038/75556
PMCID: PMC3037419  PMID: 10802651

Results 1-25 (43)