Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Dedifferentiation of Neurons Precedes Tumor Formation in lola Mutants 
Developmental Cell  2014;28(6):685-696.
The ability to reprogram differentiated cells into a pluripotent state has revealed that the differentiated state is plastic and reversible. It is evident, therefore, that mechanisms must be in place to maintain cells in a differentiated state. Transcription factors that specify neuronal characteristics have been well studied, but less is known about the mechanisms that prevent neurons from dedifferentiating to a multipotent, stem cell-like state. Here, we identify Lola as a transcription factor that is required to maintain neurons in a differentiated state. We show that Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and begin to divide, forming tumors. Thus, neurons rather than stem cells or intermediate progenitors are the tumor-initiating cells in lola mutants.
Graphical Abstract
•The BTB-Zn finger factor, Lola, maintains neurons in a differentiated state•Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons•In lola mutants, neurons dedifferentiate•Dedifferentiated neurons are tumor-initiating cells in lola mutants
Southall et al. show that the BTB-Zn finger transcription factor, Lola, is required to maintain neurons in a differentiated state. Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and divide, forming tumors.
PMCID: PMC3978655  PMID: 24631403
2.  Identification of MicroRNAs in the Coral Stylophora pistillata 
PLoS ONE  2014;9(3):e91101.
Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.
PMCID: PMC3962355  PMID: 24658574
3.  Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals 
BMC Genomics  2013;14:704.
Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous smRNAs and potential gene targets in dinoflagellates, we conducted smRNA and mRNA expression profiling over 9 experimental treatments of cultures from Symbiodinium microadriaticum, a photosynthetic symbiont of scleractinian corals.
We identified a set of 21 novel smRNAs that share stringent key features with functional microRNAs from other model organisms. smRNAs were predicted independently over all 9 treatments and their putative gene targets were identified. We found 1,720 animal-like target sites in the 3'UTRs of 12,858 mRNAs and 19 plant-like target sites in 51,917 genes. We assembled a transcriptome of 58,649 genes and determined differentially expressed genes (DEGs) between treatments. Heat stress was found to produce a much larger number of DEGs than other treatments that yielded only few DEGs. Analysis of DEGs also revealed that minicircle-encoded photosynthesis proteins seem to be common targets of transcriptional regulation. Furthermore, we identified the core RNAi protein machinery in Symbiodinium.
Integration of smRNA and mRNA expression profiling identified a variety of processes that could be under microRNA control, e.g. protein modification, signaling, gene expression, and response to DNA damage. Given that Symbiodinium seems to have a paucity of transcription factors and differentially expressed genes, identification and characterization of its smRNA repertoire establishes the possibility of a range of gene regulatory mechanisms in dinoflagellates acting post-transcriptionally.
PMCID: PMC3853145  PMID: 24119094
Symbiodinium; Dinoflagellates; Scleractinian corals; Symbiont; Coral reef; Small RNA (smRNA); microRNA (miRNA); Small interfering RNA (siRNA); mRNA; Expression profiling; RNAseq
4.  Biochemical Diversification through Foreign Gene Expression in Bdelloid Rotifers 
PLoS Genetics  2012;8(11):e1003035.
Bdelloid rotifers are microinvertebrates with unique characteristics: they have survived tens of millions of years without sexual reproduction; they withstand extreme desiccation by undergoing anhydrobiosis; and they tolerate very high levels of ionizing radiation. Recent evidence suggests that subtelomeric regions of the bdelloid genome contain sequences originating from other organisms by horizontal gene transfer (HGT), of which some are known to be transcribed. However, the extent to which foreign gene expression plays a role in bdelloid physiology is unknown. We address this in the first large scale analysis of the transcriptome of the bdelloid Adineta ricciae: cDNA libraries from hydrated and desiccated bdelloids were subjected to massively parallel sequencing and assembled transcripts compared against the UniProtKB database by blastx to identify their putative products. Of ∼29,000 matched transcripts, ∼10% were inferred from blastx matches to be horizontally acquired, mainly from eubacteria but also from fungi, protists, and algae. After allowing for possible sources of error, the rate of HGT is at least 8%–9%, a level significantly higher than other invertebrates. We verified their foreign nature by phylogenetic analysis and by demonstrating linkage of foreign genes with metazoan genes in the bdelloid genome. Approximately 80% of horizontally acquired genes expressed in bdelloids code for enzymes, and these represent 39% of enzymes in identified pathways. Many enzymes encoded by foreign genes enhance biochemistry in bdelloids compared to other metazoans, for example, by potentiating toxin degradation or generation of antioxidants and key metabolites. They also supplement, and occasionally potentially replace, existing metazoan functions. Bdelloid rotifers therefore express horizontally acquired genes on a scale unprecedented in animals, and foreign genes make a profound contribution to their metabolism. This represents a potential mechanism for ancient asexuals to adapt rapidly to changing environments and thereby persist over long evolutionary time periods in the absence of sex.
Author Summary
Bdelloid rotifers are tiny invertebrates with unusual characteristics: they withstand stresses, such as desiccation and high levels of ionising radiation, that kill other animals, and they have survived over millions of years without sexual reproduction, which contradicts theories on the evolutionary advantages of sex. In this study, we investigate another bizarre feature of bdelloids, namely their ability to acquire genes from other organisms in a process known as horizontal gene transfer (HGT). We show that HGT happens on an unprecedented scale in bdelloids: approximately 10% of active genes are “foreign,” mostly originating from bacteria and other simple organisms like fungi and algae, but now functioning as bdelloid genes. About 80% of foreign genes code for enzymes, and these make a major contribution to bdelloid biochemistry: 39% of enzyme activities have a foreign contribution, and in 23% of cases the activity in question is uniquely specified by a foreign gene. This indicates biochemistry, such as toxin degradation and antioxidant generation, that is unknown in other animals and that is expected to improve the “robustness” of the bdelloid. It also represents a possible mechanism for survival without sex, by diversification of functional capacity and even replacement of defective genes by foreign counterparts.
PMCID: PMC3499245  PMID: 23166508
5.  InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data 
Bioinformatics  2012;28(23):3163-3165.
Summary: InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast customizable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search and a library of ‘widgets’ performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages.
Availability: Freely available from under the LGPL license.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3516146  PMID: 23023984
6.  Multiple functionally divergent and conserved copies of alpha tubulin in bdelloid rotifers 
Bdelloid rotifers are microscopic animals that have apparently survived without sex for millions of years and are able to survive desiccation at all life stages through a process called anhydrobiosis. Both of these characteristics are believed to have played a role in shaping several unusual features of bdelloid genomes discovered in recent years. Studies into the impact of asexuality and anhydrobiosis on bdelloid genomes have focused on understanding gene copy number. Here we investigate copy number and sequence divergence in alpha tubulin. Alpha tubulin is conserved and normally present in low copy numbers in animals, but multiplication of alpha tubulin copies has occurred in animals adapted to extreme environments, such as cold-adapted Antarctic fish. Using cloning and sequencing we compared alpha tubulin copy variation in four species of bdelloid rotifers and four species of monogonont rotifers, which are facultatively sexual and cannot survive desiccation as adults. Results were verified using transcriptome data from one bdelloid species, Adineta ricciae.
In common with the typical pattern for animals, monogonont rotifers contain either one or two copies of alpha tubulin, but bdelloid species contain between 11 and 13 different copies, distributed across five classes. Approximately half of the copies form a highly conserved group that vary by only 1.1% amino acid pairwise divergence with each other and with the monogonont copies. The other copies have divergent amino acid sequences that evolved significantly faster between classes than within them, relative to synonymous changes, and vary in predicted biochemical properties. Copies of each class were expressed under the laboratory conditions used to construct the transcriptome.
Our findings are consistent with recent evidence that bdelloids are degenerate tetraploids and that functional divergence of ancestral copies of genes has occurred, but show how further duplication events in the ancestor of bdelloids led to proliferation in both conserved and functionally divergent copies of this gene.
PMCID: PMC3464624  PMID: 22901238
Bdelloid rotifers; Gene copies; Tubulin; Evolution
7.  modMine: flexible access to modENCODE data 
Nucleic Acids Research  2011;40(Database issue):D1082-D1088.
In an effort to comprehensively characterize the functional elements within the genomes of the important model organisms Drosophila melanogaster and Caenorhabditis elegans, the NHGRI model organism Encyclopaedia of DNA Elements (modENCODE) consortium has generated an enormous library of genomic data along with detailed, structured information on all aspects of the experiments. The modMine database ( described here has been built by the modENCODE Data Coordination Center to allow the broader research community to (i) search for and download data sets of interest among the thousands generated by modENCODE; (ii) access the data in an integrated form together with non-modENCODE data sets; and (iii) facilitate fine-grained analysis of the above data. The sophisticated search features are possible because of the collection of extensive experimental metadata by the consortium. Interfaces are provided to allow both biologists and bioinformaticians to exploit these rich modENCODE data sets now available via modMine.
PMCID: PMC3245176  PMID: 22080565
8.  Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE 
Roy, Sushmita | Ernst, Jason | Kharchenko, Peter V. | Kheradpour, Pouya | Negre, Nicolas | Eaton, Matthew L. | Landolin, Jane M. | Bristow, Christopher A. | Ma, Lijia | Lin, Michael F. | Washietl, Stefan | Arshinoff, Bradley I. | Ay, Ferhat | Meyer, Patrick E. | Robine, Nicolas | Washington, Nicole L. | Di Stefano, Luisa | Berezikov, Eugene | Brown, Christopher D. | Candeias, Rogerio | Carlson, Joseph W. | Carr, Adrian | Jungreis, Irwin | Marbach, Daniel | Sealfon, Rachel | Tolstorukov, Michael Y. | Will, Sebastian | Alekseyenko, Artyom A. | Artieri, Carlo | Booth, Benjamin W. | Brooks, Angela N. | Dai, Qi | Davis, Carrie A. | Duff, Michael O. | Feng, Xin | Gorchakov, Andrey A. | Gu, Tingting | Henikoff, Jorja G. | Kapranov, Philipp | Li, Renhua | MacAlpine, Heather K. | Malone, John | Minoda, Aki | Nordman, Jared | Okamura, Katsutomo | Perry, Marc | Powell, Sara K. | Riddle, Nicole C. | Sakai, Akiko | Samsonova, Anastasia | Sandler, Jeremy E. | Schwartz, Yuri B. | Sher, Noa | Spokony, Rebecca | Sturgill, David | van Baren, Marijke | Wan, Kenneth H. | Yang, Li | Yu, Charles | Feingold, Elise | Good, Peter | Guyer, Mark | Lowdon, Rebecca | Ahmad, Kami | Andrews, Justen | Berger, Bonnie | Brenner, Steven E. | Brent, Michael R. | Cherbas, Lucy | Elgin, Sarah C. R. | Gingeras, Thomas R. | Grossman, Robert | Hoskins, Roger A. | Kaufman, Thomas C. | Kent, William | Kuroda, Mitzi I. | Orr-Weaver, Terry | Perrimon, Norbert | Pirrotta, Vincenzo | Posakony, James W. | Ren, Bing | Russell, Steven | Cherbas, Peter | Graveley, Brenton R. | Lewis, Suzanna | Micklem, Gos | Oliver, Brian | Park, Peter J. | Celniker, Susan E. | Henikoff, Steven | Karpen, Gary H. | Lai, Eric C. | MacAlpine, David M. | Stein, Lincoln D. | White, Kevin P. | Kellis, Manolis
Science (New York, N.Y.)  2010;330(6012):1787-1797.
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.
PMCID: PMC3192495  PMID: 21177974
9.  The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details 
The model organism Encyclopedia of DNA Elements (modENCODE) project is a National Human Genome Research Institute (NHGRI) initiative designed to characterize the genomes of Drosophila melanogaster and Caenorhabditis elegans. A Data Coordination Center (DCC) was created to collect, store and catalog modENCODE data. An effective DCC must gather, organize and provide all primary, interpreted and analyzed data, and ensure the community is supplied with the knowledge of the experimental conditions, protocols and verification checks used to generate each primary data set. We present here the design principles of the modENCODE DCC, and describe the ramifications of collecting thorough and deep metadata for describing experiments, including the use of a wiki for capturing protocol and reagent information, and the BIR-TAB specification for linking biological samples to experimental results. modENCODE data can be found at
Database URL:
PMCID: PMC3170170  PMID: 21856757
10.  Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project 
Gerstein, Mark B. | Lu, Zhi John | Van Nostrand, Eric L. | Cheng, Chao | Arshinoff, Bradley I. | Liu, Tao | Yip, Kevin Y. | Robilotto, Rebecca | Rechtsteiner, Andreas | Ikegami, Kohta | Alves, Pedro | Chateigner, Aurelien | Perry, Marc | Morris, Mitzi | Auerbach, Raymond K. | Feng, Xin | Leng, Jing | Vielle, Anne | Niu, Wei | Rhrissorrakrai, Kahn | Agarwal, Ashish | Alexander, Roger P. | Barber, Galt | Brdlik, Cathleen M. | Brennan, Jennifer | Brouillet, Jeremy Jean | Carr, Adrian | Cheung, Ming-Sin | Clawson, Hiram | Contrino, Sergio | Dannenberg, Luke O. | Dernburg, Abby F. | Desai, Arshad | Dick, Lindsay | Dosé, Andréa C. | Du, Jiang | Egelhofer, Thea | Ercan, Sevinc | Euskirchen, Ghia | Ewing, Brent | Feingold, Elise A. | Gassmann, Reto | Good, Peter J. | Green, Phil | Gullier, Francois | Gutwein, Michelle | Guyer, Mark S. | Habegger, Lukas | Han, Ting | Henikoff, Jorja G. | Henz, Stefan R. | Hinrichs, Angie | Holster, Heather | Hyman, Tony | Iniguez, A. Leo | Janette, Judith | Jensen, Morten | Kato, Masaomi | Kent, W. James | Kephart, Ellen | Khivansara, Vishal | Khurana, Ekta | Kim, John K. | Kolasinska-Zwierz, Paulina | Lai, Eric C. | Latorre, Isabel | Leahey, Amber | Lewis, Suzanna | Lloyd, Paul | Lochovsky, Lucas | Lowdon, Rebecca F. | Lubling, Yaniv | Lyne, Rachel | MacCoss, Michael | Mackowiak, Sebastian D. | Mangone, Marco | McKay, Sheldon | Mecenas, Desirea | Merrihew, Gennifer | Miller, David M. | Muroyama, Andrew | Murray, John I. | Ooi, Siew-Loon | Pham, Hoang | Phippen, Taryn | Preston, Elicia A. | Rajewsky, Nikolaus | Rätsch, Gunnar | Rosenbaum, Heidi | Rozowsky, Joel | Rutherford, Kim | Ruzanov, Peter | Sarov, Mihail | Sasidharan, Rajkumar | Sboner, Andrea | Scheid, Paul | Segal, Eran | Shin, Hyunjin | Shou, Chong | Slack, Frank J. | Slightam, Cindie | Smith, Richard | Spencer, William C. | Stinson, E. O. | Taing, Scott | Takasaki, Teruaki | Vafeados, Dionne | Voronina, Ksenia | Wang, Guilin | Washington, Nicole L. | Whittle, Christina M. | Wu, Beijing | Yan, Koon-Kiu | Zeller, Georg | Zha, Zheng | Zhong, Mei | Zhou, Xingliang | Ahringer, Julie | Strome, Susan | Gunsalus, Kristin C. | Micklem, Gos | Liu, X. Shirley | Reinke, Valerie | Kim, Stuart K. | Hillier, LaDeana W. | Henikoff, Steven | Piano, Fabio | Snyder, Michael | Stein, Lincoln | Lieb, Jason D. | Waterston, Robert H.
Science (New York, N.Y.)  2010;330(6012):1775-1787.
We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor–binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor–binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
PMCID: PMC3142569  PMID: 21177976

Results 1-10 (10)