PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers 
BMC Genomics  2006;7:296.
Background
To unravel molecular targets involved in glycopeptide resistance, three isogenic strains of Staphylococcus aureus with different susceptibility levels to vancomycin or teicoplanin were subjected to whole-genome microarray-based transcription and quantitative proteomic profiling. Quantitative proteomics performed on membrane extracts showed exquisite inter-experimental reproducibility permitting the identification and relative quantification of >30% of the predicted S. aureus proteome.
Results
In the absence of antibiotic selection pressure, comparison of stable resistant and susceptible strains revealed 94 differentially expressed genes and 178 proteins. As expected, only partial correlation was obtained between transcriptomic and proteomic results during stationary-phase. Application of massively parallel methods identified one third of the complete proteome, a majority of which was only predicted based on genome sequencing, but never identified to date. Several over-expressed genes represent previously reported targets, while series of genes and proteins possibly involved in the glycopeptide resistance mechanism were discovered here, including regulators, global regulator attenuator, hyper-mutability factor or hypothetical proteins. Gene expression of these markers was confirmed in a collection of genetically unrelated strains showing altered susceptibility to glycopeptides.
Conclusion
Our proteome and transcriptome analyses have been performed during stationary-phase of growth on isogenic strains showing susceptibility or intermediate level of resistance against glycopeptides. Altered susceptibility had emerged spontaneously after infection with a sensitive parental strain, thus not selected in vitro. This combined analysis allows the identification of hundreds of proteins considered, so far as hypothetical protein. In addition, this study provides not only a global picture of transcription and expression adaptations during a complex antibiotic resistance mechanism but also unravels potential drug targets or markers that are constitutively expressed by resistant strains regardless of their genetic background, amenable to be used as diagnostic targets.
doi:10.1186/1471-2164-7-296
PMCID: PMC1687195  PMID: 17121677
2.  The ESF Programme on Functional Genomics Workshop on ‘Data Integration in Functional Genomics: Application to Biological Pathways’ 
We report from the second ESF Programme on Functional Genomics workshop on Data Integration, which covered topics including the status of biological pathways databases in existing consortia; pathways as part of bioinformatics infrastructures; design, creation and formalization of biological pathways databases; generating and supporting pathway data and interoperability of databases with other external databases and standards. Key issues emerging from the discussions were the need for continued funding to cover maintenance and curation of databases, the importance of quality control of the data in these resources, and efforts to facilitate the exchange of data and to ensure the interoperability of databases.
doi:10.1002/cfg.389
PMCID: PMC2447351  PMID: 18629067
5.  Ten Years of Standardizing Proteomic Data: a report on the HUPO-PSI Spring Workshop 12–14th April 2012, San Diego, USA 
Proteomics  2012;12(18):2767-2772.
The Human Proteome Organisation Proteomics Standards Initiative (HUPO-PSI) was established in 2002 with the aim of defining community standards for data representation in proteomics and facilitating data comparison, exchange and verification. Over the last 10 years significant advances have been made, with common data standards now published and implemented in the field of both mass spectrometry and molecular interactions. The 2012 meeting further advanced this work, with the mass spectrometry groups finalising approaches to capturing the output from recent developments in the field, such as quantitative proteomics and SRM. The molecular interaction group focused on improving the integration of data from multiple resources. Both groups united with a guest work track, organized by the HUPO Technology/Standards Committee, to formulate proposals for data submissions from the HUPO Human Proteome Project and to start an initiative to collect standard experimental protocols.
doi:10.1002/pmic.201270126
PMCID: PMC3895333  PMID: 22969026
6.  Controlled vocabularies and ontologies in proteomics: Overview, principles and practice☆ 
Biochimica et Biophysica Acta  2014;1844(1):98-107.
This paper focuses on the use of controlled vocabularies (CVs) and ontologies especially in the area of proteomics, primarily related to the work of the Proteomics Standards Initiative (PSI). It describes the relevant proteomics standard formats and the ontologies used within them. Software and tools for working with these ontology files are also discussed. The article also examines the “mapping files” used to ensure correct controlled vocabulary terms that are placed within PSI standards and the fulfillment of the MIAPE (Minimum Information about a Proteomics Experiment) requirements. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Highlights
► The semantic annotation using ontologies is a prerequisite for the semantic web. ► The HUPO-PSI defined a set of XML-based standard formats for proteomics. ► These standard formats allow the referencing of CV terms defined in obo files. ► The CV terms can be used to enforce MIAPE compliance of the data files. ► The mass spectrometry CV is constantly maintained in a community process.
doi:10.1016/j.bbapap.2013.02.017
PMCID: PMC3898906  PMID: 23429179
ANDI-MS, Analytical Data Interchange format for Mass Spectrometry; AniML, Analytical Information Markup Language; API, Application Programming Interface; ASCII, American Standard Code for Information Interchange; ASTM, American Society for Testing and Materials; BTO, BRENDA (BRaunschweig ENzyme DAtabase) Tissue Ontology; ChEBI, Chemical Entities of Biological Interest; CV, Controlled Vocabulary; DL, Description Logic; EBI, European Bioinformatics Institute; HDF5, Hierarchical Data Format, version 5; HUPO-PSI, Human Proteome Organisation-Proteomics Standards Initiative; ICD, International Classification of Diseases; IUPAC, International Union for Pure and Applied Chemistry; JCAMP-DX, Joint Committee on Atomic and Molecular Physical data-Data eXchange format; MALDI, Matrix Assisted Laser Desorption Ionization; MeSH, Medical Subject Headings; MI, Molecular Interaction; MIBBI, Minimal Information for Biological and Biomedical Investigations; MITAB, Molecular Interactions TABular format; MIAPE, Minimum Information About a Proteomics Experiment; MS, Mass Spectrometry; NCBI, National Center for Biotechnology Information; NCBO, National Center for Biomedical Ontology; netCDF, Network Common Data Format; OBI, Ontology for Biomedical Investigations; OBO, Open Biological and Biomedical Ontologies; OLS, Ontology Lookup Service; OWL, Web Ontology Language; PAR, Protein Affinity Reagents; PATO, Phenotype Attribute Trait Ontology; PRIDE, PRoteomics IDEntifications database; RDF(S), Resource Description Framework (Schema); SRM, Selected Reaction Monitoring; TPP, Trans-Proteomic Pipeline; URI, Uniform Resource Identifier; XSLT, eXtensible Stylesheet Language Transformation; YAFMS, Yet Another Format for Mass Spectrometry; Proteomics data standards; Controlled vocabularies; Ontologies in proteomics; Ontology formats; Ontology editors and software; Ontology maintenance
7.  The HUPO proteomics standards initiative- mass spectrometry controlled vocabulary 
Controlled vocabularies (CVs), i.e. a collection of predefined terms describing a modeling domain, used for the semantic annotation of data, and ontologies are used in structured data formats and databases to avoid inconsistencies in annotation, to have a unique (and preferably short) accession number and to give researchers and computer algorithms the possibility for more expressive semantic annotation of data. The Human Proteome Organization (HUPO)–Proteomics Standards Initiative (PSI) makes extensive use of ontologies/CVs in their data formats. The PSI-Mass Spectrometry (MS) CV contains all the terms used in the PSI MS–related data standards. The CV contains a logical hierarchical structure to ensure ease of maintenance and the development of software that makes use of complex semantics. The CV contains terms required for a complete description of an MS analysis pipeline used in proteomics, including sample labeling, digestion enzymes, instrumentation parts and parameters, software used for identification and quantification of peptides/proteins and the parameters and scores used to determine their significance. Owing to the range of topics covered by the CV, collaborative development across several PSI working groups, including proteomics research groups, instrument manufacturers and software vendors, was necessary. In this article, we describe the overall structure of the CV, the process by which it has been developed and is maintained and the dependencies on other ontologies.
Database URL: http://psidev.cvs.sourceforge.net/viewvc/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
doi:10.1093/database/bat009
PMCID: PMC3594986  PMID: 23482073
8.  The mzIdentML Data Standard for Mass Spectrometry-Based Proteomics Results 
Molecular & Cellular Proteomics : MCP  2012;11(7):M111.014381.
We report the release of mzIdentML, an exchange standard for peptide and protein identification data, designed by the Proteomics Standards Initiative. The format was developed by the Proteomics Standards Initiative in collaboration with instrument and software vendors, and the developers of the major open-source projects in proteomics. Software implementations have been developed to enable conversion from most popular proprietary and open-source formats, and mzIdentML will soon be supported by the major public repositories. These developments enable proteomics scientists to start working with the standard for exchanging and publishing data sets in support of publications and they provide a stable platform for bioinformatics groups and commercial software vendors to work with a single file format for identification data.
doi:10.1074/mcp.M111.014381
PMCID: PMC3394945  PMID: 22375074
9.  TraML—A Standard Format for Exchange of Selected Reaction Monitoring Transition Lists* 
Molecular & Cellular Proteomics : MCP  2011;11(4):R111.015040.
Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring.
doi:10.1074/mcp.R111.015040
PMCID: PMC3322582  PMID: 22159873
10.  mzML—a Community Standard for Mass Spectrometry Data* 
Molecular & Cellular Proteomics : MCP  2010;10(1):R110.000133.
Mass spectrometry is a fundamental tool for discovery and analysis in the life sciences. With the rapid advances in mass spectrometry technology and methods, it has become imperative to provide a standard output format for mass spectrometry data that will facilitate data sharing and analysis. Initially, the efforts to develop a standard format for mass spectrometry data resulted in multiple formats, each designed with a different underlying philosophy. To resolve the issues associated with having multiple formats, vendors, researchers, and software developers convened under the banner of the HUPO PSI to develop a single standard. The new data format incorporated many of the desirable technical attributes from the previous data formats, while adding a number of improvements, including features such as a controlled vocabulary with validation tools to ensure consistent usage of the format, improved support for selected reaction monitoring data, and immediately available implementations to facilitate rapid adoption by the community. The resulting standard data format, mzML, is a well tested open-source format for mass spectrometer output files that can be readily utilized by the community and easily adapted for incremental advances in mass spectrometry technology.
doi:10.1074/mcp.R110.000133
PMCID: PMC3013463  PMID: 20716697
11.  Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project 
Nature biotechnology  2008;26(8):889-896.
The Minimum Information for Biological and Biomedical Investigations (MIBBI) project provides a resource for those exploring the range of extant minimum information checklists and fosters coordinated development of such checklists.
doi:10.1038/nbt.1411
PMCID: PMC2771753  PMID: 18688244
12.  On the Benefits of Acquiring Peptide Fragment Ions at High Measured Mass Accuracy 
The advantages and disadvantages of acquiring tandem mass spectra by collision-induced dissociation (CID) of peptides in linear ion trap – Fourier-transform hybrid instruments are described. These instruments offer the possibility to transfer fragment ions from the linear ion trap to the FT-based analyzer for analysis with both high resolution and high mass accuracy. In addition, performing CID during the transfer of ions from the linear ion trap (LTQ) to the FT analyzer is also possible in instruments containing an additional collision cell (i.e., the “C-trap” in the LTQ-Orbitrap), resulting in tandem mass spectra over the full m/z range and not limited by the ejection q value of the LTQ. Our results show that these scan modes have lower duty cycles than tandem mass spectra acquired in the LTQ with nominal mass resolution, and typically result in fewer peptide identifications during data-dependent analysis of complex samples. However, the higher measured mass accuracy and resolution provides more specificity and hence provides a lower false positive ratio for the same number of true positives during database search of peptide tandem mass spectra. In addition, the search for modified and unexpected peptides is greatly facilitated with this data acquisition mode. It is therefore concluded that acquisition of tandem mass spectral data with high measured mass accuracy and resolution is a competitive alternative to “classical” data acquisition strategies, especially in situations of complex searches from large databases, searches for modified peptides, or for peptides resulting from unspecific cleavages.
doi:10.1016/j.jasms.2008.02.005
PMCID: PMC2459323  PMID: 18417358
14.  The 1999 SWISS-2DPAGE database update 
Nucleic Acids Research  2000;28(1):286-288.
SWISS-2DPAGE (http://www.expasy.ch/ch2d/ ) is an annotated two-dimensional polyacrylamide gel electrophoresis (2-DE) database established in 1993. The current release contains 24 reference maps from human and mouse biological samples, as well as from Saccharomyces cerevisiae, Escherichia coli and Dictyostelium discoideum origin. These reference maps have now 2824 identified spots, corresponding to 614 separate protein entries in the database, in addition to virtual entries for each SWISS-PROT sequence or any user-entered amino acids sequence. Last year improvements in the SWISS-2DPAGE database are as follows: three new maps have been created and several others have been updated; cross-references to newly built federated 2-DE databases have been added; new functions to access the data have been provided through the ExPASy proteomics server.
PMCID: PMC102456  PMID: 10592248

Results 1-14 (14)