Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation 
New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC) reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p < 0.05). Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.); a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials.
PMCID: PMC4814670  PMID: 27073807
2.  Superantigens in Staphylococcus aureus isolated from prosthetic joint infection 
Staphylococcus aureus is a common cause of prosthetic joint infection (PJI). The prevalence of superantigens (SAgs) among PJI-associated S. aureus is unknown. Eighty-four S. aureus isolates associated with PJI isolated between 1999 and 2006 were studied. SAg genes, sea, seb, sec, sed, see, seg, seh, sei and tst, were assayed by PCR. Seventy-eight (92.9%) isolates carried at least one SAg gene studied, with 61 (72.6%) harboring more than one. seg was most commonly (70.2%) and seh was least frequently (4.8%) detected. tst-positive isolates were associated with early infection and increased ESR at diagnosis (P = 0.006 and P = 0.021, respectively). seg and sei were associated with methicillin resistance (P = 0.008 and 0.002, respectively). SAg genes are prevalent in S. aureus causing PJI; a majority of PJI-associated isolates produce biologically active SAgs in both planktonic and biofilm growth modes.
PMCID: PMC4336809  PMID: 25619753
S. aureus; superantigen; prosthetic joint infection
3.  Superantigen-Producing Staphylococcus aureus Elicits Systemic Immune Activation in a Murine Wound Colonization Model 
Toxins  2015;7(12):5308-5319.
Staphylococcus aureus, the most common cause of wound infection, produces several exotoxins, including superantigens (SAgs). SAgs are the potent activators of the immune system. Given this unique property, we hypothesized that SAgs produced by S. aureus in wounds would have local, as well as systemic immunologic effects. We tested our hypothesis using a novel staphylococcal skin wound infection model in transgenic mice expressing HLA-DR3. Skin wounds were left uninfected or colonized with S. aureus strains producing SAgs or an isogenic strain not producing any SAg. Animals with wounds challenged with SAg-producing S. aureus had increased morbidity and lower serum IL-17 levels compared to those challenged with the SAg non-producing S. aureus (p = 0.027 and p = 0.032, respectively). At Day 8 following microbial challenge, compared to mice with uninfected wounds, the proportion of Vβ8+CD4+ T cells was increased, while the proportion of Vβ8+CD8+ T cells was decreased only in the spleens of mice challenged with SAg-producing S. aureus (p < 0.001). No such changes were measured in mice challenged with SAg non-producing S. aureus. Lungs, livers and kidneys from mice challenged with SAg-producing, but not SAg non-producing, S. aureus showed inflammatory changes. Overall, SAg-mediated systemic immune activation in wounds harboring S. aureus may have clinical implications.
PMCID: PMC4690136  PMID: 26670252
HLA class II transgenic mice; Staphylococcus aureus; superantigen; skin infection; wound healing; inflammation
4.  Microbial Biofilms and Breast Tissue Expanders 
BioMed Research International  2013;2013:254940.
We previously developed and validated a vortexing-sonication technique for detection of biofilm bacteria on the surface of explanted prosthetic joints. Herein, we evaluated this technique for diagnosis of infected breast tissue expanders and used it to assess colonization of breast tissue expanders. From April 2008 to December 2011, we studied 328 breast tissue expanders at Mayo Clinic, Rochester, MN, USA. Of seven clinically infected breast tissue expanders, six (85.7%) had positive cultures, one of which grew Propionibacterium species. Fifty-two of 321 breast tissue expanders (16.2%, 95% CI, 12.3–20.7%) without clinical evidence of infection also had positive cultures, 45 growing Propionibacterium species and ten coagulase-negative staphylococci. While vortexing-sonication can detect clinically infected breast tissue expanders, 16 percent of breast tissue expanders appear to be asymptomatically colonized with normal skin flora, most commonly, Propionibacterium species.
PMCID: PMC3730356  PMID: 23956974
5.  Superantigen Profiling of Staphylococcus aureus Infective Endocarditis Isolates 
The frequency of superantigen production among Staphylococcus aureus isolates associated with endocarditis is not well defined. We tested 154 S. aureus isolates from definite infective endocarditis cases for the presence of staphylococcal enterotoxins A-E, H and TSST-1 by PCR, ELISA and using an HLA-DR3 transgenic mouse splenocyte proliferation assay. Sixty-three isolates (50.8%) tested positive for at least one superantigen gene, with 21 (16.9%) testing positive for more than two. tst (28.6%) was most common, followed by seb (27%), sea (22.2%), sed (20.6%), see (17.5%), and sec (11.1%). Of 41 methicillin-resistant S. aureus, 21 had superantigen genes, with sed being more frequently detected in this group compared to methicillin-susceptible S. aureus (P<0.05). Superantigen genes were not associated with mortality (P=0.81). 75% of PCR-positive isolates induced robust splenocyte proliferation. Overall, more than half of S. aureus isolates causing endocarditis carry superantigen genes of which most are functional.
PMCID: PMC4031024  PMID: 24745820
6.  Implant sonication for the diagnosis of prosthetic elbow infection 
Periprosthetic infection is a potentially devastating complication of elbow arthroplasty, associated with formation of microbial biofilm on the implant surface. The definitive microbiologic diagnosis of periprosthetic infection after elbow arthroplasty may be difficult to establish. Our study aim was to compare the diagnostic accuracy of conventional periprosthetic tissue culture and culture of fluid derived from vortexing and bath sonication of the explanted hardware (a biofilm-sampling strategy).
Materials and methods
Patients undergoing revision elbow arthroplasty at our institution between July 2007 and July 2010, from each of whom 2 or more periprosthetic tissue cultures and 1 implant sonicate culture were obtained, were studied. A standardized definition of orthopedic implant—associated infection was applied.
We identified 27 subjects with aseptic failure and 9 with prosthetic elbow infection. Rheumatoid arthritis was the most common underlying disorder. The Coonrad-Morrey prosthesis was the most common type of implant used. The sensitivities of implant sonicate and periprosthetic tissue culture were 89% and 55%, respectively (P = .18), and the specificities were 100% and 93%, respectively (P = .16). Coagulase-negative staphylococci (n = 7) and Staphylococcus aureus (n = 2) were isolated in cases of infection.
Culture of the implant by sonication is at least as sensitive as periprosthetic tissue culture to detect prosthetic elbow infection.
Level of evidence
Level I, Diagnostic Study.
PMCID: PMC3910532  PMID: 22078323
Prosthetic joint infection; elbow prosthesis; implant; sonication; biofilm; periprosthetic tissue
7.  Rapid Molecular Microbiologic Diagnosis of Prosthetic Joint Infection 
Journal of Clinical Microbiology  2013;51(7):2280-2287.
We previously showed that culture of samples obtained by prosthesis vortexing and sonication was more sensitive than tissue culture for prosthetic joint infection (PJI) diagnosis. Despite improved sensitivity, culture-negative cases remained; furthermore, culture has a long turnaround time. We designed a genus-/group-specific rapid PCR assay panel targeting PJI bacteria and applied it to samples obtained by vortexing and sonicating explanted hip and knee prostheses, and we compared the results to those with sonicate fluid and periprosthetic tissue culture obtained at revision or resection arthroplasty. We studied 434 subjects with knee (n = 272) or hip (n = 162) prostheses; using a standardized definition, 144 had PJI. Sensitivities of tissue culture, of sonicate fluid culture, and of PCR were 70.1, 72.9, and 77.1%, respectively. Specificities were 97.9, 98.3, and 97.9%, respectively. Sonicate fluid PCR was more sensitive than tissue culture (P = 0.04). PCR of prosthesis sonication samples is more sensitive than tissue culture for the microbiologic diagnosis of prosthetic hip and knee infection and provides same-day PJI diagnosis with definition of microbiology. The high assay specificity suggests that typical PJI bacteria may not cause aseptic implant failure.
PMCID: PMC3697690  PMID: 23658273
8.  Treatment of Methicillin-resistant Staphylococcus aureus experimental Osteomyelitis with bone-targeted Vancomycin 
SpringerPlus  2013;2:329.
Methicillin-resistant S. aureus (MRSA) is a common cause of bone and joint infection. BT2-peg2-vancomycin is an investigational bone-targeted formulation of vancomycin which we hypothesized would have increased antimicrobial activity compared to conventional vancomycin in a chronic experimental MRSA osteomyelitis model.
We tested bone affinity using an hydroxyapatite (HA) binding assay, assessed the in vitro antimicrobial susceptibility of 30 MRSA isolates, and compared vancomycin and BT2-peg2-vancomycin in a rat experimental osteomyelitis model.
Vancomycin did not bind to hydroxyapatite (HA binding index = 0), whereas BT2-peg2-vancomycin showed appreciable binding (HA binding index = 57). The MIC50 was 1 μg/ml and the MIC90 was 2 μg/ml for both vancomycin and BT2-peg2-vancomycin. The MBC90 was 16 and 4 μg/ml for vancomycin and BT2-peg2-vancomycin, respectively. Treatment with 50 mg/kg of vancomycin every 12 hours (median, 4.73 log10 cfu/g), 63.85 mg/kg (equivalent to 50 mg/kg vancomycin) of BT2-peg2-vancomycin every 12 hours (median, 3.93 log10 cfu/g) or 63.85 mg/kg of BT2-peg2-vancomycin once per week (median, 5.00 log10 cfu/g) was more active than no treatment (median, 5.22 log10 cfu/g) (P =0.0481). Treatment with 63.85 mg/kg of BT2-peg2-vancomycin every 12 hours was more active than all other treatment regimens evaluated (P≤0.0150), but was associated with high plasma BT2-peg2-vancomycin levels, decreased animal weight, increased kidney size, creatinine and BUN, and leukocytosis with tubulointerstitial nephritis.
With optimization of pharmacokinetic parameters to prevent toxicity, BT2-peg2-vancomycin may be useful in the treatment of MRSA osteomyelitis.
PMCID: PMC4320154  PMID: 25674391
Vancomycin; Experimental osteomyelitis; MRSA; BT2-peg2-vancomycin
9.  Prosthetic Joint Infection Diagnosis Using Broad-Range PCR of Biofilms Dislodged from Knee and Hip Arthroplasty Surfaces Using Sonication 
Journal of Clinical Microbiology  2012;50(11):3501-3508.
Periprosthetic tissue and/or synovial fluid PCR has been previously studied for prosthetic joint infection (PJI) diagnosis; however, few studies have assessed the utility of PCR on biofilms dislodged from the surface of explanted arthroplasties using vortexing and sonication (i.e., sonicate fluid PCR). We compared sonicate fluid 16S rRNA gene real-time PCR and sequencing to culture of synovial fluid, tissue, and sonicate fluid for the microbiologic diagnosis of PJI. PCR sequences generating mixed chromatograms were decatenated using RipSeq Mixed. We studied sonicate fluids from 135 and 231 subjects with PJI and aseptic failure, respectively. Synovial fluid, tissue, and sonicate fluid culture and sonicate fluid PCR had similar sensitivities (64.7, 70.4, 72.6, and 70.4%, respectively; P > 0.05) and specificities (96.9, 98.7, 98.3, and 97.8%, respectively; P > 0.05). Combining sonicate fluid culture and PCR, the sensitivity was higher (78.5%, P < 0.05) than those of individual tests, with similar specificity (97.0%). Thirteen subjects had positive sonicate fluid culture but negative PCR, and 11 had negative sonicate fluid culture but positive PCR (among which 7 had prior use of antimicrobials). Broad-range PCR and culture of sonicate fluid have equivalent performance for PJI diagnosis.
PMCID: PMC3486250  PMID: 22895042
10.  Linezolid Is Superior to Vancomycin in Experimental Pneumonia Caused by Superantigen-Producing Staphylococcus aureus in HLA Class II Transgenic Mice 
Antimicrobial Agents and Chemotherapy  2012;56(10):5401-5405.
Superantigens (SAg), the potent activators of the immune system, are important determinants of Staphylococcus aureus virulence and pathogenicity. Superior response to SAg in human leukocyte antigen (HLA)-DR3 transgenic mice rendered them more susceptible than C57BL/6 mice to pneumonia caused by SAg-producing strains of S. aureus. Linezolid, a bacterial protein synthesis inhibitor, was superior to vancomycin in inhibiting SAg production by S. aureus in vitro and conferred greater protection from pneumonia caused by SAg-producing staphylococci.
PMCID: PMC3457354  PMID: 22850509
11.  Treatment with Linezolid or Vancomycin in Combination with Rifampin Is Effective in an Animal Model of Methicillin-Resistant Staphylococcus aureus Foreign Body Osteomyelitis ▿  
Rifampin monotherapy was compared to the combination of linezolid or vancomycin with rifampin in an experimental rat model of methicillin-resistant Staphylococcus aureus (MRSA) chronic foreign body osteomyelitis. MRSA was inoculated into the proximal tibia, and a titanium wire was implanted. Four weeks after infection, rats were treated intraperitoneally for 21 days with rifampin alone (n = 16), linezolid plus rifampin (n = 14), or vancomycin plus rifampin (n = 13). Thirteen animals received no treatment. At completion of treatment, qualitative cultures of the wire and quantitative cultures of the bone (reported as median values) were performed. Quantitative cultures from the control, rifampin monotherapy, linezolid-plus-rifampin, and vancomycin-plus-rifampin groups revealed 4.54, 0.71, 0.10, and 0.50 log10 CFU/gram of bone, respectively. The bacterial load was significantly reduced in all treatment groups compared to that in the control group. Rifampin resistance was detected in isolates from 10, 2, and 1 animal in the rifampin, linezolid-plus-rifampin, and vancomycin-plus-rifampin groups, respectively. Cultures of the removed wire revealed bacterial growth in 1 and 2 animals in the rifampin and linezolid-plus-rifampin groups, respectively, with no growth in the vancomycin-plus-rifampin group and growth from all wires in the untreated group. In conclusion, we demonstrated that combination treatment with linezolid plus rifampin or vancomycin plus rifampin is effective in an animal model of MRSA foreign body osteomyelitis in the context of retention of the infected foreign body.
PMCID: PMC3067063  PMID: 21189340
12.  C-Reactive Protein, Erythrocyte Sedimentation Rate and Orthopedic Implant Infection 
PLoS ONE  2010;5(2):e9358.
C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) have been shown to be useful for diagnosis of prosthetic hip and knee infection. Little information is available on CRP and ESR in patients undergoing revision or resection of shoulder arthroplasties or spine implants.
We analyzed preoperative CRP and ESR in 636 subjects who underwent knee (n = 297), hip (n = 221) or shoulder (n = 64) arthroplasty, or spine implant (n = 54) removal. A standardized definition of orthopedic implant-associated infection was applied. Receiver operating curve analysis was used to determine ideal cutoff values for differentiating infected from non-infected cases. ESR was significantly different in subjects with aseptic failure infection of knee (median 11 and 53.5 mm/h, respectively, p = <0.0001) and hip (median 11 and 30 mm/h, respectively, p = <0.0001) arthroplasties and spine implants (median 10 and 48.5 mm/h, respectively, p = 0.0033), but not shoulder arthroplasties (median 10 and 9 mm/h, respectively, p = 0.9883). Optimized ESR cutoffs for knee, hip and shoulder arthroplasties and spine implants were 19, 13, 26, and 45 mm/h, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 89 and 74% for knee, 82 and 60% for hip, and 32 and 93% for shoulder arthroplasties, and 57 and 90% for spine implants. CRP was significantly different in subjects with aseptic failure and infection of knee (median 4 and 51 mg/l, respectively, p<0.0001), hip (median 3 and 18 mg/l, respectively, p<0.0001), and shoulder (median 3 and 10 mg/l, respectively, p = 0.01) arthroplasties, and spine implants (median 3 and 20 mg/l, respectively, p = 0.0011). Optimized CRP cutoffs for knee, hip, and shoulder arthroplasties, and spine implants were 14.5, 10.3, 7, and 4.6 mg/l, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 79 and 88% for knee, 74 and 79% for hip, and 63 and 73% for shoulder arthroplasties, and 79 and 68% for spine implants.
CRP and ESR have poor sensitivity for the diagnosis of shoulder implant infection. A CRP of 4.6 mg/l had a sensitivity of 79 and a specificity of 68% to detect infection of spine implants.
PMCID: PMC2825262  PMID: 20179760

Results 1-12 (12)