Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A Vaccine Targeted at CETP Alleviates High Fat and High Cholesterol Diet-Induced Atherosclerosis and Non-Alcoholic Steatohepatitis in Rabbit 
PLoS ONE  2014;9(12):e111529.
Low HDL-C levels are associated with atherosclerosis and non-alcoholic steatohepatitis, and increased levels may reduce the risk of these diseases. Inhibition of cholesteryl ester transfer protein (CETP) activity is considered a promising strategy for increasing HDL-C levels. Since CETP is a self-antigen with low immunogenicity, we developed a novel CETP vaccine (Fc-CETP6) to overcome the low immunogenicity of CETP and for long-term inhibition of CETP activity. The vaccine consists of a rabbit IgG Fc domain for antigen delivery to antigen-presenting cells fused to a linear array of 6 repeats of a CETP epitope to efficiently activate B cells. Rabbits were fed a high fat/cholesterol (HFC) diet to induce atherosclerosis and NASH, and immunized with Fc-CETP6 vaccine. The Fc-CETP6 vaccine successfully elicited anti-CETP antibodies and lowered plasma CETP activity. The levels of plasma HDL-C and ApoA-I were higher, and plasma ox-LDL lower, in the Fc-CETP6-immunized rabbits as compared to the unimmunized HFC diet-fed rabbits. Pathological analyses revealed less lipid accumulation and inflammation in the aorta and liver of the Fc-CETP6-immunized rabbits. These results show that the Fc-CETP6 vaccine efficiently elicited antibodies against CETP and reduced susceptibility to both atherosclerosis and steatohepatitis induced by the HFC diet. Our findings suggest that the Fc-CETP6 vaccine may improve atherosclerosis and NASH and has high potential for clinical use.
PMCID: PMC4259298  PMID: 25486007
2.  LPS-Induced G-CSF Expression in Macrophages Is Mediated by ERK2, but Not ERK1 
PLoS ONE  2015;10(6):e0129685.
Granulocyte colony-stimulating factor (G-CSF) selectively stimulates proliferation and differentiation of neutrophil progenitors which play important roles in host defense against infectious agents. However, persistent G-CSF production often leads to neutrophilia and excessive inflammatory reactions. There is therefore a need to understand the mechanism regulating G-CSF expression. In this study, we showed that U0126, a MEK1/2 inhibitor, decreases lipopolysaccharide (LPS)-stimulated G-CSF promoter activity, mRNA expression and protein secretion. Using short hairpin RNA knockdown, we demonstrated that ERK2, and not ERK1, involves in LPS-induced G-CSF expression, but not LPS-regulated expression of TNF-α. Reporter assays showed that ERK2 and C/EBPβ synergistically activate G-CSF promoter activity. Further chromatin immunoprecipitation (ChIP) assays revealed that U0126 inhibits LPS-induced binding of NF-κB (p50/p65) and C/EBPβ to the G-CSF promoter, but not their nuclear protein levels. Knockdown of ERK2 inhibits LPS-induced accessibility of the G-CSF promoter region to DNase I, suggesting that chromatin remodeling may occur. These findings clarify that ERK2, rather than ERK1, mediates LPS-induced G-CSF expression in macrophages by remodeling chromatin, and stimulates C/EBPβ-dependent activation of the G-CSF promoter. This study provides a potential target for regulating G-CSF expression.
PMCID: PMC4483241  PMID: 26114754
3.  Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway 
PLoS ONE  2015;10(5):e0126725.
Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC.
PMCID: PMC4433267  PMID: 25978354
4.  Malondialdehyde mediates oxidized LDL-induced coronary toxicity through the Akt-FGF2 pathway via DNA methylation 
Oxidized LDL (oxLDL) is involved in the development of atherosclerotic heart disease through a mechanism that is not fully understood. In this study, we examined the role of malondialdehyde (MDA), an important oxidative stress epitope of oxLDL, in mediating coronary endothelial cytotoxicity.
Human coronary artery endothelial cells (HCAECs) were treated with oxLDL in the presence or absence of antibody against MDA (anti-MDA) or apoB100 (anti-apoB100). In HCAECs treated with oxLDL (100 μg/ml) alone, DNA synthesis, cell viability, and expression of prosurvival fibroblast growth factor 2 (FGF2) were significantly reduced (P < 0.01 vs phosphate buffered saline–treated cells). These inhibitory effects of oxLDL were significantly attenuated in HCAECs cotreated with anti-MDA (0.15 μg/ml; P < 0.05 vs oxLDL-treated cells), but not in those cotreated with anti-apoB100. When we tested the effects of a panel of signal transduction modifiers on the signal transduction pathways of MDA in oxLDL-treated HCAECs, we found that MDA-induced cytotoxicity was mediated partly through the Akt pathway. Using a reporter gene assay, we identified an oxLDL-response element in the FGF2 promoter that was responsible for the transcriptional repression of FGF2 by oxLDL. The results of bisulfite genomic DNA sequencing showed that in HCAECs treated with oxLDL, the GC-rich promoter of FGF2 was heavily methylated at cytosine residues, whereas cotreatment with anti-MDA markedly reduced oxLDL-induced FGF2 promoter methylation.
OxLDL disrupts the growth and survival of HCAECs through an MDA-dependent pathway involving methylation of the FGF2 promoter and repression of FGF2 transcription. This novel epigenetic mechanism of oxLDL may underlie its atherogenicity in patients with atherosclerotic cardiovascular disease.
PMCID: PMC3931320  PMID: 24490960
DNA methylation; Epigenetics; Gene expression; Lipid oxidation; Lipoproteins; Malondialdehyde (MDA); Signal transduction
5.  Hepatitis C Virus Replication Is Modulated by the Interaction of Nonstructural Protein NS5B and Fatty Acid Synthase 
Journal of Virology  2013;87(9):4994-5004.
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase (RdRp) that acts as a key player in the HCV replication complex. Understanding the interplay between the viral and cellular components of the HCV replication complex could provide new insight for prevention of the progression of HCV-associated hepatocellular carcinoma (HCC). In this study, the NS5B protein was used as the bait in a pulldown assay to screen for NS5B-interacting proteins that are present in Huh7 hepatoma cell lysates. After mass spectrophotometric analysis, fatty acid synthase (FASN) was found to interact with NS5B. Coimmunoprecipitation and double staining assays further confirmed the direct binding between NS5B and FASN. The domain of NS5B that interacts with FASN was also determined. Moreover, FASN was associated with detergent-resistant lipid rafts and colocalized with NS5B in active HCV replication complexes. In addition, overexpression of FASN enhanced HCV expression in Huh7/Rep-Feo cells, while transfection of FASN small interfering RNA (siRNA) or treatment with FASN-specific inhibitors decreased HCV replication and viral production. Notably, FASN directly increased HCV NS5B RdRp activity in vitro. These results together indicate that FASN interacts with NS5B and modulates HCV replication through a direct increase of NS5B RdRp activity. FASN may thereby serve as a target for the treatment of HCV infection and the prevention of HCV-associated HCC progression.
PMCID: PMC3624299  PMID: 23427160
6.  Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes 
Chinese Medicine  2011;6:12.
Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes.
Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction.
AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression.
AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.
PMCID: PMC3076299  PMID: 21435270

Results 1-7 (7)