PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
author:("Yacoub, adl")
1.  Sorafenib and HDAC inhibitors synergize to kill CNS tumor cells 
Cancer Biology & Therapy  2012;13(7):567-574.
The present studies were designed to determine whether the multi-kinase inhibitor sorafenib (Nexavar) interacted with histone deacetylase inhibitors to kill glioblastoma and medulloblastoma cells. In a dose-dependent fashion sorafenib lethality was enhanced in multiple genetically disparate primary human glioblastoma isolates by the HDAC inhibitor sodium valproate (Depakote). Drug exposure reduced phosphorylation of p70 S6K and of mTOR. Similar data to that with valproate were also obtained using the HDAC inhibitor vorinostat (Zolinza). Sorafenib and valproate also interacted to kill medulloblastoma and PNET cell lines. Treatment with sorafenib and HDAC inhibitors radio-sensitized both GBM and medulloblastoma cell lines. Knock down of death receptor (CD95) expression protected GBM cells from the drug combination, as did overexpression of c-FLIP-s, BCL-XL and dominant negative caspase 9. Knock down of PDGFRα recapitulated the effect of sorafenib in combination with HDAC inhibitors. Collectively, our data demonstrate that the combination of sorafenib and HDAC inhibitors kills through activation of the extrinsic pathway, and could represent a useful approach to treat CNS-derived tumors.
doi:10.4161/cbt.19771
PMCID: PMC3679096  PMID: 22406992
HDAC inhibitor; Sorafenib; apoptosis; glioma
2.  OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependent increases in tumor cell killing 
Cancer Biology & Therapy  2012;13(4):224-236.
We have further defined mechanism(s) by which the drug OSU-03012 (OSU) kills tumor cells. OSU lethality was suppressed by knock down of PERK and enhanced by knock down of ATF6 and IRE1α. OSU treatment suppressed expression of the chaperone, BiP/GRP78, and did so through reduced stability of the protein. Knock down of BiP/GRP78 further enhanced OSU lethality. Overexpression of BiP/GRP78 abolished OSU toxicity. Pre-treatment of cells with OSU enhanced radiosensitivity to a greater extent than concomitant or sequential drug treatment with radiation exposure. Expression of a mutant active p110 PI3K, or mutant active forms of the EGFR in GBM cells did not differentially suppress OSU killing. In contrast loss of PTEN function reduced OSU lethality, without altering AKT, p70 S6K or mTOR activity, or the drug's ability to radiosensitize GBM cells. Knock down of PTEN protected cells from OSU and radiation treatment whereas re-expression of PTEN facilitated drug lethality and radiosensitization. In a dose-dependent fashion OSU prolonged the survival of mice carrying GBM tumors and interacted with radiotherapy to further prolong survival. Collectively, our data show that reduced BiP/GRP78 levels play a key role in OSU-3012 toxicity in GBM cells, and that this drug has in vivo activity against an invasive primary human GBM isolate.
doi:10.4161/cbt.13.4.18877
PMCID: PMC3336069  PMID: 22354011
OSU-03012; BiP/GRP78; ER stress; PERK; ionizing radiation; ceramide
3.  Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death 
Cancer Biology & Therapy  2011;12(3):215-228.
The present studies were initiated to determine in greater molecular detail the regulation of CHK1 inhibitor lethality in transfected and infected breast cancer cells and using genetic models of transformed fibrobalsts. Multiple MEK1/2 inhibitors (PD184352, AZD6244 [ARRY-142886]) interacted with multiple CHK1 inhibitors (UCN-01 [7-hydroxystaurosporine], AZD7762) to kill mammary carcinoma cells and transformed fibroblasts. In transformed cells, CHK1 inhibitor-induced activation of ERK1/2 was dependent upon activation of SRC family non-receptor tyrosine kinases as judged by use of multiple SRC kinase inhibitors (PP 2, Dasatinib; AZD0530), use of SRC/FYN/YES deleted transformed fibroblasts or by expression of dominant negative SRC. Cell killing by SRC family kinase inhibitors and CHK1 inhibitors was abolished in BAX/BAK−/− transformed fibroblasts and suppressed by overexpression of BCL-XL. Treatment of cells with BCL-2/BCL-XL antagonists promoted SRC inhibitor + CHK1 inhibitor-induced lethality in a BAX/BAK-dependent fashion. Treatment of cells with [SRC + CHK1] inhibitors radio-sensitized tumor cells. These findings argue that multiple inhibitors of the SRC-RAS-MEK pathway interact with multiple CHK1 inhibitors to kill transformed cells.
doi:10.4161/cbt.12.3.16218
PMCID: PMC3230482  PMID: 21642769
CHK1; SRC; apoptosis; breast cancer; kinase; therapeutics; intrinsic; caspase
4.  Activated NK T cells and NK cells render T cells resistant to MDSC and result in an effective adoptive cellular therapy against breast cancer in the FVBN202 transgenic mouse§ 
Attempts to cure breast cancer by means of adoptive cellular therapy (ACT) have not been successful. This is primarily due to the presence of tumor-induced immune suppressive mechanisms as well as the failure of tumor-reactive T cells to provide long-term memory responses in vivo. In order to address these clinically important challenges we developed an ex vivo protocol for the expansion of tumor-reactive immune cells obtained from tumor-bearing animals prior to or after local radiation therapy. We used an antigen-free protocol which included bryostatin 1/ionomycin (B/I) and sequential common gamma-chain cytokines (IL-7/IL-15 + IL-2). The proposed protocol expanded tumor-reactive T cells as well as activated non-T cells, including NK T cells, NK cells and IFN-γ producing killer dendritic cells (IKDC). Anti-tumor efficacy of T cells depended on the presence of non-T cells. The effector non-T cells also rendered T cells resistant to myeloid-derived suppressor cells (MDSC). Radiation therapy altered phenotypic distribution and differentiation of T cells, as well as their ability to generate central memory T cells (TCM). ACT by means of the expanded cells protected animals from tumor challenge and generated long-term memory responses against the tumor, provided that leukocytes were derived from tumor-bearing animals prior to radiation therapy. The ex vivo protocol was also able to expand HER-2/neu-specific T cells derived from the PBMC of a single patient with breast carcinoma. These data suggest that the proposed ACT protocol should be studied further in breast cancer patients.
doi:10.4049/jimmunol.1100502
PMCID: PMC3131490  PMID: 21670315
adoptive cellular therapy; breast cancer; common gamma chain cytokines; adiation therapy of cancer; myeloid-derived suppressor cells
5.  Sorafenib enhances pemetrexed cytotoxicity through an autophagy -dependent mechanism in cancer cells 
Cancer research  2011;71(14):4955-4967.
Pemetrexed (ALIMTA) is a folate anti-metabolite that has been approved for the treatment of non-small cell lung cancer, and has been shown to stimulate autophagy. In the present study, we sought to further understand the role of autophagy in the response to pemetrexed and to test if combination therapy could enhance the level of toxicity through altered autophagy in tumor cells. The multi-kinase inhibitor sorafenib (NEXAVAR), used in the treatment of renal and hepatocellular carcinoma, suppresses tumor angiogenesis and promotes autophagy in tumor cells. We found that sorafenib interacted in a greater than additive fashion with pemetrexed to increase autophagy and to kill a diverse array of tumor cell types. Tumor cell types that displayed high levels of cell killing after combination treatment showed elevated levels of AKT, p70 S6K and/or phosphorylated mTOR, in addition to Class III RTKs such as PDGFRβ and VEGFR1, known in vivo targets of sorafenib. In xenograft and in syngeneic animal models of mammary carcinoma and glioblastoma, the combination of sorafenib and pemetrexed suppressed tumor growth without deleterious effects on normal tissues or animal body mass. Taken together, the data suggest that premexetred and sorafenib act synergistically to enhance tumor killing via the promotion of a toxic form of autophagy that leads to activation of the intrinsic apoptosis pathway, and predict that combination treatment represents a future therapeutic option in the treatment of solid tumors.
doi:10.1158/0008-5472.CAN-11-0898
PMCID: PMC3139015  PMID: 21622715
6.  OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins 
Cancer biology & therapy  2010;9(7):526-536.
The present studies focused on determining whether the autophagy-inducing drug OSU-03012 (AR-12) could enhance the toxicity of recombinant adenoviral delivery of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) in glioblastoma multiforme (GBM) cells. The toxicity of a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7) was enhanced by OSU-03012 in a diverse panel of primary human GBM cells. The enhanced toxicity correlated with reduced ERK1/2 phosphorylation and expression of MCL-1 and BCL-XL, and was blocked by molecular activation of ERK1/2 and by inhibition of the intrinsic, but not the extrinsic, apoptosis pathway. Both OSU-03012 and expression of MDA-7/IL-24 increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) that correlated with increased levels of autophagy and expression of dominant negative PERK blocked autophagy induction and tumor cell death. Knockdown of ATG5 or Beclin1 suppressed OSU-03012 enhanced MDA-7/IL-24-induced autophagy and blocked the lethal interaction between the two agents. Ad.mda-7-infected GBM cells secreted MDA-7/IL-24 into the growth media and this conditioned media induced expression of MDA-7/IL-24 in uninfected GBM cells. OSU-03012 interacted with conditioned media to kill GBM cells and knockdown of MDA-7/IL-24 in these cells suppressed tumor cell killing. Collectively, our data demonstrate that the induction of autophagy and mitochondrial dysfunction by a combinatorial treatment approach represents a potentially viable strategy to kill primary human GBM cells.
PMCID: PMC2888700  PMID: 20107314
ROS; caspase; ER stress; CD95; cell death
7.  The development of MDA-7/IL-24 as a cancer therapeutic 
Pharmacology & therapeutics  2010;128(2):375-384.
The cytokine melanoma differentiation associated gene 7 (mda-7) was identified by subtractive hybridization as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, was classified as a member of the interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and rapid cell death. In addition, MDA-7/IL-24 has been noted to radiosensitize tumor cells which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress and suppress protein translation. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, strongly arguing that MDA-7/IL-24 could have significant therapeutic value. This review describes what is presently known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
doi:10.1016/j.pharmthera.2010.08.001
PMCID: PMC2947573  PMID: 20732354
MDA-7; IL-24; Apoptosis; Autophagy; Ceramide; ROS; Ca2+; Clinical trial; Signal transduction; PERK; ER stress; MCL-1
8.  Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells 
Molecular cancer therapeutics  2008;7(2):297-313.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that correlated with inactivation of ERK1/2 and activation of JNK1-3. Activation of JNK1-3 was dependent on protein kinase R–like endoplasmic reticulum kinase (PERK), and GST-MDA-7 lethality was suppressed in PERK−/− cells. JNK1-3 signaling activated BAX, whereas inhibition of JNK1-3, deletion of BAX, or expression of dominant-negative caspase-9 suppressed lethality. GST-MDA-7 also promoted a PERK-, JNK-, and cathepsin B–dependent cleavage of BID; loss of BID function promoted survival. GST-MDA-7 suppressed BAD and BIM phosphorylation and heat shock protein 70 (HSP70) expression. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methylade-nine, expression of HSP70 or BiP/GRP78, or knockdown of ATG5 or Beclin-1 expression but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin-1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data show that GST-MDA-7 induces an endoplasmic reticulum stress response that is causal in the activation of multiple proapoptotic pathways, which converge on the mitochondrion and highlight the complexity of signaling pathways altered by mda-7/IL-24 in glioma cells that ultimately culminate in decreased tumor cell survival.
doi:10.1158/1535-7163.MCT-07-2166
PMCID: PMC3204355  PMID: 18281515
9.  mda-7/IL-24: A Unique Member of the IL-10 Gene Family Promoting Cancer-Targeted Toxicity 
Cytokine & growth factor reviews  2010;21(5):381-391.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect anti-tumor activity through inhibition of angiogenesis, stimulation of an anti-tumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
doi:10.1016/j.cytogfr.2010.08.004
PMCID: PMC3164830  PMID: 20926331
mda-7/IL-24; apoptosis; autophagy; bystander antitumor activity; cancer terminator virus
10.  Mechanism by Which Mcl-1 Regulates Cancer-Specific Apoptosis Triggered by mda-7/IL-24, an IL-10-Related Cytokine 
Cancer research  2010;70(12):5034-5045.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a cytokine belonging to the IL-10 family, selectively induces apoptosis in cancer cells without harming normal cells by promoting an endoplasmic reticulum (ER) stress response. The precise molecular mechanism by which the ER stress response culminates in cell death requires further clarification. The present study shows that in prostate carcinoma cells, the mda-7/IL-24-induced ER stress response causes apoptosis by translational inhibition of the antiapoptotic protein myeloid cell leukemia-1 (Mcl-1). Forced expression of Mcl-1 blocked mda-7/IL-24 lethality, whereas RNA interference or gene knockout of Mcl-1 markedly sensitized transformed cells to mda-7/IL-24. Mcl-1 downregulation by mda-7/IL-24 relieved its association with the proapoptotic protein Bak, causing oligomerization of Bak and leading to cell death. These observations show the profound role of the Bcl-2 protein family member Mcl-1 in regulating cancer-specific apoptosis induced by this cytokine. Thus, our studies provide further insights into the molecular mechanism of ER stress-induced cancer-selective apoptosis by mda-7/IL-24. As Mcl-1 is overexpressed in the majority of prostate cancers, mda-7/IL-24 might provide an effective therapeutic for this disease.
doi:10.1158/0008-5472.CAN-10-0563
PMCID: PMC3171699  PMID: 20501829
11.  Astrocyte Elevated Gene-1 (AEG-1): a novel target for human glioma therapy 
Molecular cancer therapeutics  2010;9(1):79-88.
Malignant gliomas including glioblastoma multiforme (GBM) and anaplastic astrocytomas are the most common primary brain tumors. Despite multimodal treatment including surgery, chemotherapy and radiation, median survival for patients with GBMs is only 12–15 months. Identifying molecules critical for glioma progression is crucial for devising effective targeted therapy. In the present study, we investigated the potential contribution of Astrocyte Elevated Gene-1 (AEG-1) in gliomagenesis and explored the possibility of AEG-1 as a therapeutic target for malignant glioma. We analyzed the expression levels of AEG-1 in 9 normal brain tissues and 98 brain tumor patient samples by Western blot analysis and immunohistochemistry. AEG-1 expression was significantly elevated in > 90% of diverse human brain tumor samples including GBMs and astrocytic tumors, and also in human glioma cell lines as compared to normal brain tissues and normal astrocytes. Knockdown of AEG-1 by siRNA inhibited cell viability, cloning efficiency, invasive ability of U87 human glioma cells and 9L rat gliosarcoma cells. We also found that matrix metalloproteases (MMP-2 and MMP-9) are involved in AEG-1-mediated invasion of glioma cells. In an orthotopic nude mouse brain tumor model using primary human GBM12 tumor cells, AEG-1 siRNA significantly suppressed glioma cell growth in vivo. Taken together these provocative results indicate that AEG-1 may play a crucial role in the pathogenesis of glioma and that AEG-1 could represent a viable potential target for malignant glioma therapy.
doi:10.1158/1535-7163.MCT-09-0752
PMCID: PMC3165052  PMID: 20053777
AEG-1; brain tumor; glioma; invasion; angiogenesis
12.  MDA-7/IL-24 as a cancer therapeutic: from bench to bedside 
Anti-cancer drugs  2010;21(8):725-731.
The novel cytokine melanoma differentiation associated gene-7 (mda-7) was identified by subtractive hybridization in the mid-1990s as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, has now been classified as a member of the expanding interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and ultimately cell death. In addition, MDA-7/IL-24 has been noted to be a radiosensitizing cytokine, which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, which strongly argues that MDA-7/IL-24 may have significant therapeutic value. This review describes what is known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
doi:10.1097/CAD.0b013e32833cfbe1
PMCID: PMC2915543  PMID: 20613485
MDA-7: melanoma differentiation associated gene 7
13.  Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca2+ - de novo ceramide - PP2A - ROS dependent signaling pathway 
Cancer research  2010;70(15):6313-6324.
The targeted therapeutics sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I evaluation. In this study we determined how CD95 is activated by treatment with this drug combination. Low doses of sorafenib and vorinostat but not the individual drugs rapidly increased ROS, Ca2+ and ceramide levels in GI tumor cells. The production of ROS was reduced in Rho zero cells. Quenching ROS blocked drug-induced CD95 surface localization and apoptosis. ROS generation, CD95 activation and cell killing was also blocked by quenching of induced Ca2+ levels or by inhibition of PP2A. Inhibition of acidic sphingomyelinase or de novo ceramide generation blocked the induction of ROS however combined inhibition of both acidic sphingomyelinase and de novo ceramide generation was required to block the induction of Ca2+. Quenching of ROS did not impact on drug-induced ceramide/dihydro-ceramide levels whereas quenching of Ca2+ reduced the ceramide increase. Sorafenib and vorinostat treatment radiosensitized liver and pancreatic cancer cells, an effect that was suppressed by quenching ROS or knock down of LASS6. Further, sorafenib and vorinostat treatment suppressed the growth of pancreatic tumors in vivo. Our findings demonstrate that induction of cytosolic Ca2+ by sorafenib and vorinostat is a primary event that elevates dihydroceramide levels, each essential steps in ROS generation that promotes CD95 activation.
doi:10.1158/0008-5472.CAN-10-0999
PMCID: PMC2918282  PMID: 20631069
14.  Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in GI tumor cells 
Molecular cancer therapeutics  2010;9(8):2220-2231.
Sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and the present studies have determined individually how sorafenib and vorinostat contribute to CD95 activation. Sorafenib (3-6 μM) promoted a dose-dependent increase in Src Y416, ERBB1 Y845 and CD95 Y232/Y291 phosphorylation, and Src Y527 dephosphorylation. Low levels of sorafenib (3 μM) –induced CD95 tyrosine phosphorylation did not promote surface localization whereas sorafenib (6 μM), or sorafenib (3 μM) and vorinostat (500 nM) treatment promoted higher levels of CD95 phosphorylation that correlated with DISC formation, receptor surface localization and autophagy. CD95 (Y232F, Y291F) was not tyrosine phosphorylated and was unable to plasma membrane localize or induce autophagy. Knock down / knock out of Src family kinases abolished sorafenib –induced: CD95 tyrosine phosphorylation; DISC formation; and the induction of cell death and autophagy. Knock down of PDGFRβ enhanced Src Y416 and CD95 tyrosine phosphorylation that correlated with elevated CD95 plasma membrane levels and autophagy, and with a reduced ability of sorafenib to promote CD95 membrane localization. Vorinostat increased ROS levels; and in a delayed NFκB-dependent fashion, those of FAS ligand and CD95. Neutralization of FAS-L did not alter the initial rapid drug-induced activation of CD95 however, neutralization of FAS-L reduced sorafenib + vorinostat toxicity by ~50%. Thus sorafenib contributes to CD95 activation by promoting receptor tyrosine phosphorylation whereas vorinostat contributes to CD95 activation via initial facilitation of ROS generation and subsequently of FAS-L expression.
doi:10.1158/1535-7163.MCT-10-0274
PMCID: PMC2933415  PMID: 20682655
Vorinostat; Sorafenib; CD95; c-FLIP-s; FAS-L; cell death; autophagy
15.  17AAG and MEK1/2 inhibitors kill GI tumor cells via Ca2+-dependent suppression of GRP78/BiP and induction of ceramide and ROS 
Molecular cancer therapeutics  2010;9(5):1378-1395.
The present studies determined in greater detail the molecular mechanisms upstream of the CD95 death receptor by which geldanamycin HSP90 inhibitors and MEK1/2 inhibitors interact to kill carcinoma cells. MEK1/2 inhibition enhanced 17AAG toxicity that was suppressed in cells deleted for mutant active RAS which were non-tumorigenic but was magnified in isogenic tumorigenic cells expressing H-RAS V12 or K-RAS D13. MEK1/2 inhibitor and 17AAG treatment increased intracellular Ca2+ levels and reduced GRP78/BiP expression in a Ca2+ -dependent manner. GRP78/BiP over-expression, however, also suppressed drug-induced intracellular Ca2+ levels. MEK1/2 inhibitor and 17AAG treatment increased ROS levels that were blocked by quenching Ca2+ or over-expression of GRP78/BiP. MEK1/2 inhibitor and 17AAG treatment activated CD95 and inhibition of ceramide synthesis; ROS or Ca2+ quenching blocked CD95 activation. In SW620 cells that are patient matched to SW480 cells, MEK1/2 inhibitor and 17AAG toxicity was significantly reduced that correlated with a lack of CD95 activation and lower expression of ceramide synthase 6 (LASS6). Over-expression of LASS6 in SW620 cells enhanced drug-induced CD95 activation and enhanced tumor cell killing. Inhibition of ceramide signaling abolished drug-induced ROS generation but not drug-induced cytosolic Ca2+ levels. Thus treatment of tumor cells with MEK1/2 inhibitor and 17AAG induces cytosolic Ca2+ and loss of GRP78/BiP function, leading to de novo ceramide synthesis pathway activation that plays a key role in ROS generation and CD95 activation.
doi:10.1158/1535-7163.MCT-09-1131
PMCID: PMC2868106  PMID: 20442308
Geldanamycin; 17AAG; MEK1/2 inhibitor; CD95; c-FLIP-s; GRP78/BiP; autophagy; cell death; ASMase; de novo
16.  Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine mda-7/IL-24 
Cancer research  2010;70(9):3667-3676.
mda-7/IL-24 is a unique member of the IL-10 gene family, which displays a broad range of antitumor properties including induction of cancer-specific apoptosis. Adenoviral mediated delivery by Ad.mda-7 invokes an endoplasmic reticulum stress response that is associated with ceramide production and autophagy in some cancer cells. Here we report that Ad.mda-7-induced ER stress and ceramide production triggers autophagy in human prostate cancer cells, but not normal prostate epithelial cells, through a canonical signaling pathway that involves Beclin-1, atg5 and hVps34. Autophagy occurs in cancer cells at early times after Ad.mda-7 infection but a switch to apoptosis occurs by 48 hr post-infection. Inhibiting autophagy with 3-methyladenosine increases Ad.mda-7-induced apoptosis, suggesting that autophagy may be initiated first as a cytoprotective mechanism. Inhibiting apoptosis by overexpression of anti-apoptotic proteins Bcl-2 or Bcl-xL increased autophagy after Ad.mda-7 infection. During the apoptotic phase, the MDA-7/IL-24 protein physically interacted with Beclin-1 in a manner that could inhibit Beclin-1 function culminating in apoptosis. Conversely, Ad.mda-7 infection elicited calpain-mediated cleavage of the autophagic protein ATG5 in a manner that could facilitate switch to apoptosis. Our findings reveal novel aspects of the interplay between autophagy and apoptosis in prostate cancer cells that underlie the cytotoxic action of mda-7/IL-24, possibly providing new insights in the development of combinatorial therapies for prostate cancer.
doi:10.1158/0008-5472.CAN-09-3647
PMCID: PMC2874885  PMID: 20406981
mda-7/IL-24; protective autophagy; apoptosis; Beclin-1; atg5
17.  PERK–Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24–Induced Killing of Primary Human Glioblastoma Multiforme Cells 
Cancer research  2010;70(3):1120-1129.
Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R–like endoplasmic reticulum kinase (PERK), Ca++ elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca++ induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7–killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca2+, and ROS, which in turn promote glioma cell autophagy and cell death.
doi:10.1158/0008-5472.CAN-09-4043
PMCID: PMC2890071  PMID: 20103619
18.  Enhancing mda-7/IL-24 therapy in renal carcinoma cells by inhibiting multiple protective signaling pathways using sorafenib and by Ad.5/3 gene delivery 
Cancer Biology & Therapy  2010;10(12):1290-1305.
We have determined whether an adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7, more effectively infects and kills renal carcinoma cells (RCCs) compared to a serotype 5 virus, Ad.5-mda-7. RCCs are a tumor cell type that generally does not express the receptor for the type 5 adenovirus; the coxsakie and adenovirus receptor (CAR). Ad.5/3-mda-7 infected RCCs to a much greater degree than Ad.5-mda-7. MDA-7/IL-24 protein secreted from Ad.5/3-mda-7-infected RCCs induced MDA-7/IL-24 expression and promoted apoptosis in uninfected “bystander” RCCs. MDA-7/IL-24 killed both infected and bystander RCCs via CD95 activation. Knockdown of intracellular MDA-7/IL-24 in uninfected RCCs blocked the lethal effects of conditioned media. Infection of RCC tumors in one flank, with Ad.5/3-mda-7, suppressed growth of infected tumors and reduced the growth rate of uninfected tumors implanted on the opposite flank. The toxicity of the serotype 5/3 recombinant adenovirus to express MDA-7/IL-24 was enhanced by combined molecular or small molecule inhibition of MEK1/2 and PI3K; inhibition of mTOR, PI3K and MEK1/2; or use of the multi-kinase inhibitor sorafenib. In RCCs, combined inhibition of cytoprotective cell signaling pathways enhanced the MDA-7/IL-24-induction of CD95 activation, with greater mitochondrial dysfunction due to loss of MCL-1 and BCL-XL expression and tumor cell death. Treatment of RCC tumors in vivo with sorafenib also enhanced Ad.5/3-mda-7 toxicity and prolonged animal survival. Future combinations of these approaches hold promise for developing a more effective therapy for kidney cancer.
doi:10.4161/cbt.10.12.13497
PMCID: PMC3047088  PMID: 20948318
ERK; JNK; PI3K; AKT; MDA-7/IL-24; sorafenib; PERK; MAPK; interleukin; RCC; kidney
19.  MDA-7/IL-24–induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK–dependent mechanism 
Molecular cancer therapeutics  2009;8(5):1280-1291.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7–induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal–regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH2-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7–induced phosphorylation of protein kinase R–like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R–like endoplasmic reticulum kinase that correlated with reduced c-jun NH2-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal–regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.
doi:10.1158/1535-7163.MCT-09-0073
PMCID: PMC2889018  PMID: 19417161
20.  Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo 
Cancer Biology & Therapy  2010;10(9):903-917.
The present studies have examined approaches to suppress MCL-1 function in breast cancer cells, as a means to promote tumor cell death. Treatment of breast cancer cells with CDK inhibitors (flavopiridol; roscovitine) enhanced the lethality of the ERBB1 inhibitor lapatinib in a synergistic fashion. CDK inhibitors interacted with lapatinib to reduce MCL-1 expression and overexpression of MCL-1 or knock down of BAX and BAK suppressed drug combination lethality. Lapatinib-mediated inhibition of ERK1/2 and to a lesser extent AKT facilitated CDK inhibitor-induced suppression of MCL-1 levels. Treatment of cells with the BH3 domain/MCL-1 inhibitor obatoclax enhanced the lethality of lapatinib in a synergistic fashion. Knock out of MCL-1 and BCL-XL enhanced lapatinib toxicity to a similar extent as obatoclax and suppressed the ability of obatoclax to promote lapatinib lethality. Pre-treatment of cells with lapatinib or with obatoclax enhanced basal levels of BAX and BAK activity and further enhanced drug combination toxicity. In vivo tumor growth data in xenograft and syngeneic model systems confirmed our in vitro findings. Treatment of cells with CDK inhibitors enhanced the lethality of obatoclax in a synergistic fashion. Overexpression of MCL-1 or knock down of BAX and BAK suppressed the toxic interaction between CDK inhibitors and obatoclax. Obatoclax and lapatinib treatment or obatoclax and CDK inhibitor treatment or lapatinib and CDK inhibitor treatment radiosensitized breast cancer cells. Lapatinib and obatoclax interacted to suppress mammary tumor growth in vivo. Collectively our data demonstrate that manipulation of MCL-1 protein expression by CDK inhibition or inhibition of MCL-1 sequestering function by Obatoclax renders breast cancer cells more susceptible to BAX/BAK-dependent mitochondrial dysfunction and tumor cell death.
doi:10.4161/cbt.10.9.13273
PMCID: PMC3040858  PMID: 20855960
MCL-1; Lapatinib; Obatoclax; Flavopiridol; Roscovitine; CDK inhibitor; RTK inhibitor; BCL-2 inhibitor; BAK
21.  Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance 
Cancer research  2009;69(1):143-150.
The novel phosphatidylinositol-3-kinase (PI-3-kinase) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI-3-kinase (PIK3CA) and loss of PTEN activity were sufficient but not necessary as predictors of sensitivity to the antitumor activity of the PI-3-K inhibitor PX-866 in the presence of wild type Ras, while mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI-3-kinase signaling measured by tumor phospho-Ser473-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse phase protein array (RPPA) revealed that the Ras dependent down stream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best defined downstream targets of Ras, namely Raf, RalGDS, and PI-3-kinase, showed that mutant Ras mediates resistance through its ability to utilize multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI-3-kinase inhibition may serve as an important guide for patient selection as inhibitors enter clinical trials, and for the development of rational combinations with other molecularly targeted agents.
doi:10.1158/0008-5472.CAN-07-6656
PMCID: PMC2613546  PMID: 19117997
PX-866; PI-3-K; Akt; Ras; response
22.  RLIP76 IN DEFENSE OF RADIATION POISONING 
Purpose
To determine the role of RLIP76 in providing protection from radiation and chemotherapy. In the present report, we used RLIP76 to refer to both the mouse (Ralbp1) and the human (RLIP76) 76-kDa splice variant proteins (RLIP76) for convenience and to avoid confusion. In other reports, Ralbp1 refers to the mouse enzyme (encoded by the Ralbp1 gene), which is structurally and functionally homologous to RLIP76, the human protein encoded by the human RALBP1 gene.
Methods and Materials
Median lethal dose studies were performed in RLIP76-/- and RLIP76+/+ C57B mice after treatment with a single dose of RLIP76 liposomes 14 h after whole body radiation. The radiosensitivity of the cultured mouse embryonic fibroblasts and the effects of buthionine sulfoximine (BSO), amifostine, c-jun N-terminal kinase (JNK), protein kinase B (Akt), and MAPK/ERK kinase (MEK) were determined by colony-forming assays. Glutathione-linked enzyme activities were measured by spectrophotometric assays, glutathione by dithiobis-2-nitrobenzoic acid (DTNB), lipid hydroperoxides by iodometric titration, and aldehydes and metabolites by thiobarbitauric acid reactive substances and liquid chromatography-mass spectrometry (LCMS).
Results
RLIP76-/- mice were significantly more sensitive to radiation than were the wild-type, and RLIP76 liposomes prolonged survival in a dose-dependent manner in both genotypes. The levels of 4-hydroxynonenal and glutathione-conjugate of 4-hydroxynonenal were significantly increased in RLIP76-/- tissues compared with RLIP76+/+. RLIP76-/- mouse embryonic fibroblasts were markedly more radiosensitive than RLIP76+/+ mouse embryonic fibroblasts, despite increased glutathione levels in the former. RLIP76 augmentation had a remarkably greater protective effect compared with amifostine. The magnitude of effects of RLIP76 loss on radiation sensitivity was greater than those caused by perturbations of JNK, MEK, or Akt, and the effects of RLIP76 loss could not be completely compensated for by modulating the levels of these signaling proteins.
Conclusion
The results of our study have shown that RLIP76 plays a central role in radiation resistance.
doi:10.1016/j.ijrobp.2008.06.1497
PMCID: PMC2664086  PMID: 18793957
RLIP76; Ralbp1; Radiation-resistance; Embryonic fibroblasts
23.  MEK1/2 inhibitors and 17AAG synergize to kill human GI tumor cells in vitro via suppression of c-FLIP-s levels and activation of CD95 
Molecular cancer therapeutics  2008;7(9):2633-2648.
Prior studies have noted that inhibitors of MEK1/2 enhanced geldanamycin lethality in malignant hematopoietic cells by promoting mitochondrial dysfunction. The present studies focused on defining the mechanism(s) by which these agents altered survival in carcinoma cells. MEK1/2 inhibitors (PD184352; AZD6244 (ARRY-142886)) interacted in a synergistic manner with geldanamycins (17AAG, 17DMAG) to kill hepatoma and pancreatic carcinoma cells that correlated with inactivation of ERK1/2 and AKT and with activation of p38 MAPK; p38 MAPK activation was ROS-dependent. Treatment of cells with MEK1/2 inhibitors and 17AAG reduced expression of c-FLIP-s that was mechanistically connected to loss of MEK1/2 and AKT function; inhibition of caspase 8 or over-expression of c-FLIP-s abolished cell killing by MEK1/2 inhibitors and 17AAG. Treatment of cells with MEK1/2 inhibitors and 17AAG caused a p38 MAPK-dependent plasma membrane clustering of CD95 without altering the levels or cleavage of FAS ligand. In parallel, treatment of cells with MEK1/2 inhibitors and 17AAG caused a p38 MAPK-dependent association of caspase 8 with CD95. Inhibition of p38 MAPK or knock down of BID, FADD or CD95 expression suppressed MEK1/2 inhibitor and 17AAG lethality. Similar correlative data were obtained using a xenograft flank tumor model system. Our data demonstrate that treatment of tumor cells with MEK1/2 inhibitors and 17AAG induces activation of the extrinsic pathway and that suppression of c-FLIP-s expression is crucial in transduction of the apoptotic signal from CD95 to promote cell death.
doi:10.1158/1535-7163.MCT-08-0400
PMCID: PMC2585522  PMID: 18790746
CD95; caspase; extrinsic; FLIP
24.  Lapatinib resistance in HCT116 cells is mediated by elevated MCL-1 expression, decreased BAK activation, and not by ERBB receptor mutation 
Molecular pharmacology  2008;74(3):807-822.
We have defined some of the mechanisms by which the kinase inhibitor Lapatinib kills HCT116 cells. Lapatinib inhibited radiation-induced activation of ERBB1/2, ERK1/2 and AKT, and radiosensitized HCT116 cells. Prolonged incubation of HCT116 cells with Lapatinib caused cell killing followed by outgrowth of Lapatinib adapted cells. Adapted cells were resistant to serum-starvation –induced cell killing and were cross resistant to multiple therapeutic drugs. Lapatinib was competent to inhibit basal and EGF-stimulated ERBB1 phosphorylation in adapted cells. Co-expression of dominant negative ERBB1 and dominant negative ERBB2 inhibited basal and EGF-stimulated ERBB1 and ERBB2 phosphorylation in parental cells. However in neither parental nor adapted cells did expression of dominant negative ERBB1 and dominant negative ERBB2 recapitulate the cell death promoting effects of Lapatinib. Adapted cells had increased expression of MCL-1, decreased expression of BAX, and decreased activation of BAX and BAK. Over-expression of BCL-XL protected parental cells from Lapatinib toxicity. Knock down of MCL-1 expression enhanced Lapatinib toxicity in adapted cells that was reverted by knock down of BAK expression. Inhibition of caspase function modestly reduced Lapatinib toxicity in parental cells whereas knock down of AIF expression suppressed Lapatinib toxicity. Thus in HCT116 cells Lapatinib adaptation can be mediated by altered expression of pro- and anti-apoptotic proteins that maintain mitochondrial function.
doi:10.1124/mol.108.047365
PMCID: PMC2574656  PMID: 18544666
Lapatinib; Ras; cell death
25.  Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation 
Purpose and Design
Mechanism(s) by which the multi-kinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat interact to kill hepatic, renal and pancreatic adenocarcinoma cells have been defined.
Results
Low doses of sorafenib and vorinostat interacted in vitro in a synergistic fashion to kill hepatic, renal and pancreatic adenocarcinoma cells in multiple short term viability (24–96h) and in long term colony formation assays. Cell killing was suppressed by inhibition of cathepsin proteases and caspase 8, and to a lesser extent by inhibition of caspase 9. Twenty four hours after exposure, the activities of ERK1/2, AKT and NFκB were only modestly modulated by sorafenib and vorinostat treatment. However, 24h after exposure, sorafenib and vorinostat- treated cells exhibited markedly diminished expression of c-FLIP-s, full length BID, BCL-2, BCLXL, MCL-1, XIAP, increased expression of BIM, and increased activation of BAX, BAK and BAD. Expression of eIF2α S51A blocked sorafenib and vorinostat –induced suppression of c-FLIP-s levels and over-expression of c-FLIP-s abolished lethality. Sorafenib and vorinostat treatment increased surface levels of CD95 and CD95 association with caspase 8. Knock down of CD95 or FADD expression significantly reduced sorafenib / vorinostat -mediated lethality.
Conclusions
These data demonstrate that combined exposure of epithelial tumor cell types to sorafenib and vorinostat diminishes expression of multiple anti-apoptotic proteins, promotes activation of the CD95 extrinsic apoptotic and the lysosomal protease pathways, and that suppression of c-FLIP-s expression represents a critical event in transduction of the pro-apoptotic signals from CD95 to promote mitochondrial dysfunction and death.
doi:10.1158/1078-0432.CCR-08-0469
PMCID: PMC2561272  PMID: 18765530
Vorinostat; Sorafenib; CD95; c-FLIP-s; caspase 8; cathepsin; cell death

Results 1-25 (27)