Search tips
Search criteria

Results 1-25 (67)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24 
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent “bystander” activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival.
PMCID: PMC4334374  PMID: 23720015
MDA-7/IL-24; apoptosis; Wnt signaling; cancer-initiating/stem cells; breast cancer
2.  Enhanced Prostate Cancer Gene Transfer and Therapy Using a Novel Serotype Chimera Cancer Terminator Virus (Ad.5/3-CTV) 
Journal of cellular physiology  2014;229(1):34-43.
Few options are available for treating patients with advanced prostate cancer (PC). As PC is a slow growing disease and accessible by ultrasound, gene therapy could provide a viable option for this neoplasm. Conditionally replication-competent adenoviruses (CRCAs) represent potentially useful reagents for treating PC. We previously constructed a CRCA, cancer terminator virus (CTV), which showed efficacy both in vitro and in vivo for PC. The CTV was generated on a serotype 5-background (Ad.5-CTV) with infectivity depending on Coxsackie-Adenovirus Receptors (CARs). CARs are frequently reduced in many tumor types, including PCs thereby limiting effective Ad-mediated therapy. Using serotype chimerism, a novel CTV (Ad.5/3-CTV) was created by replacing the Ad.5 fiber knob with the Ad.3 fiber knob thereby facilitating infection in a CAR-independent manner. We evaluated Ad.5/3-CTV in comparison with Ad.5-CTV in low CAR human PC cells, demonstrating higher efficiency in inhibiting cell viability in vitro. Moreover, Ad.5/3-CTV potently suppressed in vivo tumor growth in a nude mouse xenograft model and in a spontaneously induced PC that develops in Hi-myc transgenic mice. Considering the significant responses in a Phase I clinical trial of a non-replicating Ad.5-mda-7 in advanced cancers, Ad.5/3-CTV may exert improved therapeutic benefit in a clinical setting.
PMCID: PMC4332535  PMID: 23868767
3.  Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction 
Cancer research  2013;74(2):563-574.
Subtraction-hybridization combined with induction of cancer cell terminal differentiation in human melanoma cells identified melanoma differentiation associated gene-7 (mda-7/IL-24) and SARI (Suppressor of AP-1, induced by IFN) that display potent antitumor activity. These genes are not constitutively expressed in cancer cells and forced expression of mda-7/IL-24 (Ad.mda-7) or SARI(Ad.SARI) promotes cancer-specific cell death. Ectopic expression of mda-7/IL-24 induces SARI mRNA and protein in a panel of different cancer cells leading to cell death, without harming corresponding normal cells. Simultaneous inhibition of K-ras downstream extracellular regulated kinase 1/2 (ERK1/2) signaling in pancreatic cancer cells reverses the translational block of MDA-7/IL-24 and induces SARI expression and cell death. Using SARI-antisense-based approaches we demonstrate that SARI expression is necessary for mda-7/IL-24 antitumor effects. Secreted MDA-7/IL-24 protein induces antitumor ‘bystander’ effects by promoting its own expression. Recombinant MDA-7/IL-24 (His-MDA-7) induces SARI expression, supporting the involvement of SARI in the MDA-7/IL-24-driven autocrine loop culminating in antitumor effects. Moreover, His-MDA-7 after binding to its cognate receptors (IL-20R1/IL-20R2 or IL-22R/IL-20R2) induces intracellular signaling by phosphorylation of p38 MAPK leading to transcription of a family of growth arrest and DNA damage inducible (GADD) genes, culminating in apoptosis. Inhibition of p38 MAPK fails to induce SARI following Ad.mda-7 infection. These findings reveal the significance of the mda-7/IL-24-SARI axis in cancer-specific killing, and provide a potential strategy for treating both local and metastatic disease.
PMCID: PMC3915776  PMID: 24282278
SARI; MDA-7/IL-24; apoptosis; IL-20/IL-22 receptors
4.  MDA-9/syntenin is a key regulator of glioma pathogenesis 
Neuro-Oncology  2013;16(1):50-61.
The extraordinary invasiveness of human glioblastoma multiforme (GBM) contributes to treatment failure and the grim prognosis of patients diagnosed with this tumor. Consequently, it is imperative to define further the cellular mechanisms that control GBM invasion and identify promising novel therapeutic targets. Melanoma differentiation associated gene–9 (MDA-9/syntenin) is a highly conserved PDZ domain–containing scaffolding protein that promotes invasion and metastasis in vitro and in vivo in human melanoma models. To determine whether MDA-9/syntenin is a relevant target in GBM, we investigated its expression in tumor samples and involvement in GBM invasion and angiogenesis.
We assessed MDA-9/syntenin levels in available databases, patient tumor samples, and human-derived cell lines. Through gain-of-function and loss-of-function studies, we analyzed changes in invasion, angiogenesis, and signaling in vitro. We used orthotopic xenografts with GBM6 cells to demonstrate the role of MDA-9/syntenin in GBM pathogenesis in vivo.
MDA-9/syntenin expression in high-grade astrocytomas is significantly higher than normal tissue counterparts. Forced overexpression of MDA-9/syntenin enhanced Matrigel invasion, while knockdown inhibited invasion, migration, and anchorage-independent growth in soft agar. Moreover, overexpression of MDA-9/syntenin increased activation of c-Src, p38 mitogen-activated protein kinase, and nuclear factor kappa-B, leading to elevated expression of matrix metalloproteinase 2 and secretion of interleukin-8 with corresponding changes observed upon knockdown. GBM6 cells that stably express small hairpin RNA for MDA-9/syntenin formed smaller tumors and had a less invasive phenotype in vivo.
Our findings indicate that MDA-9/syntenin is a novel and important mediator of invasion in GBM and a key regulator of pathogenesis, and we identify it as a potential target for anti-invasive treatment in human astrocytoma.
PMCID: PMC3870820  PMID: 24305713
MDA-9/syntenin; GBM; glioma; invasion; intracranial injection
5.  Role of the staphylococcal nuclease and tudor domain containing 1 in oncogenesis (Review) 
International Journal of Oncology  2014;46(2):465-473.
The staphylococcal nuclease and tudor domain containing 1 (SND1) is a multifunctional protein overexpressed in breast, prostate, colorectal and hepatocellular carcinomas and malignant glioma. Molecular studies have revealed the multifaceted activities of SND1 involved in regulating gene expression at transcriptional as well as post-transcriptional levels. Early studies identified SND1 as a transcriptional co-activator. SND1 is also a component of RNA-induced silencing complex (RISC) thus mediating RNAi function, a regulator of mRNA splicing, editing and stability, and plays a role in maintenance of cell viability. Such diverse actions allow the SND1 to modulate a complex array of molecular networks, thereby promoting carcinogenesis. Here, we describe the crucial role of SND1 in cancer development and progression, and highlight SND1 as a potential target for therapeutic intervention.
PMCID: PMC4277250  PMID: 25405367
staphylococcal nuclease and tudor domain containing 1; astrocyte elevated gene-1; cancer; metastasis
6.  Novel Role of MDA-9/Syntenin in Regulating Urothelial Cell Proliferation by Modulating EGFR Signaling 
Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression.
Experimental Design
Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knock down was examined in multiple cells lines and key findings were validated in primary tumors.
Significantly higher (p= 0.002–0.003) expression of MDA-9/Syntenin was observed in 64% (28/44) of primary tumors and an association was evident with stage (p=0.01), grade (p=0.03) and invasion status (p=0.02). MDA-9/Syntenin overexpression in non-tumorigenic HUC-1 cells increased proliferation (p=0.0012), invasion (p=0.0001) and EGFR, AKT, PI3K and c-Src expression. Alteration of Beta-catenin, E-Cadherin, Vimentin, Claudin-1, ZO-1 and TCF4 expression were also observed. MDA-9/Syntenin knock down in 3 UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and co-localization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin: AKT expressions with stage (p=0.04, EGFR), (p=0.01, AKT). A correlation between MDA-9/Syntenin: β-catenin co-expression with stage (p=0.03) and invasion (p=0.04) was also evident.
Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring and therapeutic strategies for managing UCC.
PMCID: PMC3872137  PMID: 23873690
Urothelial cancer; MDA-9/Syntenin; invasion; EGFR signaling
7.  Expression patterns of MDA-9/syntenin during development of the mouse embryo 
Journal of molecular histology  2012;44(2):159-166.
MDA-9 (melanoma differentiation associated gene-9)/Syntenin is a PDZ domain-containing adaptor protein involved in multiple diverse cellular processes including organization of protein complexes in the plasma membrane, intracellular trafficking and cell surface targeting, synaptic transmission, and cancer metastasis. In the present study, we analyzed the expression pattern of MDA-9/syntenin during mouse development. MDA-9/syntenin was robustly expressed with tight regulation of its temporal and spatial expression during fetal development in the developing skin, spinal cord, heart, lung and liver, which are regulated by multiple signaling pathways in the process of organogenesis. Recent studies also indicate that MDA-9/syntenin is involved in the signaling pathways crucial during development such as Wnt, Notch and FGF. Taken together, these results suggest that MDA-9/syntenin may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation through modulating multiple signaling pathways as a crucial adaptor protein. Additionally, temporal regulation of MDA-9/syntenin expression may be required during specific stages and in specific tissues during development.
PMCID: PMC3605205  PMID: 23180153
MDA-9/syntenin; development; mouse embryo; adaptor protein
8.  Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling 
FEBS Open Bio  2014;4:353-361.
•SND1 augments AT1R receptor level by posttranscriptional regulation.•SND1 activates TGFβ signaling which promotes the epithelial–mesenchymal transition.•Migration and invasion by human hepatocellular carcinoma (HCC) cells are augmented by SND1.•A correlation is observed between SND1 and AT1R expression in HCC patients.
Staphylococcal nuclease domain containing-1 (SND1) is overexpressed in human hepatocellular carcinoma (HCC) patients and promotes tumorigenesis by human HCC cells. We now document that SND1 increases angiotensin II type 1 receptor (AT1R) levels by increasing AT1R mRNA stability. This results in activation of ERK, Smad2 and subsequently the TGFβ signaling pathway, promoting epithelial–mesenchymal transition (EMT) and migration and invasion by human HCC cells. A positive correlation was observed between SND1 and AT1R expression levels in human HCC patients. Small molecule inhibitors of SND1, alone or in combination with AT1R blockers, might be an effective therapeutic strategy for late-stage aggressive HCC.
PMCID: PMC4050181  PMID: 24918049
ACE, angiotensin-I converting enzyme; ACE-I, ACE inhibitors; AT1R, angiotensin II type 1 receptor; EMT, epithelial–mesenchymal transition; FDR, false discovery rate; HCC, human hepatocellular carcinoma; LP, losartan potassium; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NASH, non-alcoholic steatohepatitis; PAI-1, plasminogen activator inhibitor-1; RISC, RNA-induced silencing complex; SND1, Staphylococcal nuclease domain containing-1; SND1; AT1R; TGFβ; PAI-1; Invasion
9.  Targeting the Bcl-2 Family for Cancer Therapy 
Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation.
Areas covered
This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics.
Expert opinion
Strategies to specifically identify and inhibit critical determinants that promote therapy-resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying small molecule inhibitors with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
PMCID: PMC3955095  PMID: 23173842
BH3 domain; apoptosis; Mcl-1; radiation resistance; chemotherapy resistance
10.  Raf kinase inhibitor RKIP inhibits MDA-9/syntenin-mediated metastasis in melanoma 
Cancer research  2012;72(23):6217-6226.
Melanoma differentiation associated gene-9 (MDA-9), also known as syntenin, functions as a positive regulator of melanoma progression and metastasis. In contrast, the Raf kinase inhibitor RKIP, a negative modulator of RAF-stimulated MEKK activation, is strongly downregulated in metastatic melanoma cells. In this study, we explored an hypothesized inverse relationship between MDA-9 and RKIP in melanoma. Tumor array and cell line analyses confirmed an inverse relationship between expression of MDA-9 and RKIP during melanoma progression. We found that MDA-9 transcriptionally downregulated RKIP in support of a suggested crosstalk between these two proteins. Further, MDA-9 and RKIP physically interacted in a manner that correlated with a suppression of FAK and c-Src phosphorylation, crucial steps necessary for MDA-9 to promote FAK/c-Src complex formation and initiate signaling cascades that drive the MDA-9-mediated metastatic phenotype. Lastly, ectopic RKIP expression in melanoma cells overrode MDA-9-mediated signaling, inhibiting cell invasion, anchorage-independent growth and in vivo dissemination of tumor cells. Taken together, these findings establish RKIP as an inhibitor of MDA-9-dependent melanoma metastasis, with potential implications for targeting this process therapeutically.
PMCID: PMC3939082  PMID: 23066033
RKIP; MDA-9/syntenin, melanoma; c-Src; FAK
11.  AEG-1/MTDH/LYRIC, the Beginning: Initial Cloning, Structure, Expression Profile, and Regulation of Expression 
Since its initial identification as a HIV-1-inducible gene in 2002, astrocyte elevated gene-1 (AEG-1), subsequently cloned as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), has emerged over the past 10 years as an important oncogene providing a valuable prognostic marker in patients with various cancers. Recent studies demonstrate that AEG-1/MTDH/LYRIC is a pleiotropic protein that can localize in the cell membrane, cytoplasm, endoplasmic reticulum (ER), nucleus, and nucleolus, and contributes to diverse signaling pathways such as PI3K–AKT, NF-κB, MAPK, and Wnt. In addition to tumorigenesis, this multifunctional protein is implicated in various physiological and pathological processes including development, neurodegeneration, and inflammation. The present review focuses on the discovery of AEG-1/MTDH/LYRIC and conceptualizes areas of future direction for this intriguing gene. We begin by describing how AEG-1, MTDH, and LYRIC were initially identified by different research groups and then discuss AEG-1 structure, functions, localization, and evolution. We conclude with a discussion of the expression profile of AEG-1/MTDH/LYRIC in the context of cancer, neurological disorders, inflammation, and embryogenesis, and discuss how AEG-1/MTDH/LYRIC is regulated. This introductory discussion of AEG-1/MTDH/LYRIC will serve as the basis for the detailed discussions in other chapters of the unique properties of this intriguing molecule.
PMCID: PMC3930353  PMID: 23889986
12.  AEG-1/MTDH/LYRIC: Signaling Pathways, Downstream Genes, Interacting Proteins, and Regulation of Tumor Angiogenesis 
Advances in cancer research  2013;120:75-111.
Astrocyte elevated gene-1 (AEG-1), also known as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), was initially cloned in 2002. AEG-1/MTDH/LYRIC has emerged as an important oncogene that is overexpressed in multiple types of human cancer. Expanded research on AEG-1/MTDH/LYRIC has established a functional role of this molecule in several crucial aspects of tumor progression, including transformation, proliferation, cell survival, evasion of apoptosis, migration and invasion, metastasis, angiogenesis, and chemoresistance. The multifunctional role of AEG-1/MTDH/LYRIC in tumor development and progression is associated with a number of signaling cascades, and recent studies identified several important interacting partners of AEG-1/MTDH/LYRIC in regulating cancer promotion and other biological functions. This review evaluates the current literature on AEG-1/MTDH/LYRIC function relative to signaling changes, interacting partners, and angiogenesis and highlights new perspectives of this molecule, indicating its potential as a significant target for the clinical treatment of various cancers and other diseases.
PMCID: PMC3928810  PMID: 23889988
13.  AEG-1/MTDH/LYRIC in Liver Cancer 
Advances in cancer research  2013;120:193-221.
Hepatocellular carcinoma (HCC) is a highly virulent malignancy with diverse etiology. Identification of a common mediator of aggressive progression of HCC would be extremely beneficial not only for diagnostic/prognostic purposes but also for developing targeted therapies. AEG-1/MTDH/LYRIC gene is amplified in human HCC patients, and overexpression of AEG-1/MTDH/LYRIC has been identified in a high percentage of both hepatitis B virus and hepatitis C virus positive HCC cases, suggesting its key role in regulating hepatocarcinogenesis. Important insights into the molecular mechanisms mediating oncogenic properties of AEG-1/MTDH/LYRIC, especially regulating chemoresistance, angiogenesis, and metastasis, have been obtained from studies using HCC model. Additionally, analysis of HCC model has facilitated the identification of AEG-1/MTDH/LYRIC downstream genes and interacting proteins, thereby unraveling novel players regulating HCC development and progression leading to the development of novel interventional strategies. Characterization of a hepatocyte-specific AEG-1/MTDH/LYRIC transgenic mouse (Alb/AEG-1) has revealed novel aspects of AEG-1/MTDH/LYRIC function in in vivo contexts. Combination of AEG-1/MTDH/LYRIC inhibition and chemotherapy has documented significant efficacy in abrogating human HCC xenografts in nude mice indicating the need for developing effective AEG-1/MTDH/LYRIC inhibition strategies to obtain objective response and survival benefits in terminal HCC patients.
PMCID: PMC3924581  PMID: 23889992
14.  AEG-1/MTDH/LYRIC: Clinical Significance 
Advances in cancer research  2013;120:39-74.
“Gain-of-function” and “loss-of-function” studies in human cancer cells and analysis of a transgenic mouse model have convincingly established that AEG-1/MTDH/LYRIC performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis, and chemoresistance, the salient defining hallmarks of cancer. These observations are strongly buttressed by clinicopathologic correlations of AEG-1/MTDH/LYRIC expression in a diverse array of cancers distinguishing AEG-1/MTDH/LYRIC as an independent biomarker for highly aggressive metastatic disease with poor prognosis. AEG-1/MTDH/LYRIC has been shown to be a marker predicting response to chemotherapy, and serum anti-AEG-1/MTDH/LYRIC antibody titer also serves as a predictor of advanced stages of aggressive cancer. However, inconsistent findings have been reported regarding the localization of AEG-1/MTDH/LYRIC protein in the nucleus or cytoplasm of cancer cells and the utility of nuclear or cytoplasmic AEG-1/MTDH/LYRIC to predict the course and prognosis of disease. This chapter provides a comprehensive analysis of the existing literature to emphasize the common and conflicting findings relative to the clinical significance of AEG-1/MTDH/LYRIC in cancer.
PMCID: PMC3924591  PMID: 23889987
16.  MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma 
Cancer research  2012;73(2):844-854.
Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous).
PMCID: PMC3548987  PMID: 23233738
mda-9/syntenin; melanoma; angiogenesis; IGFBP-2; HuVECs; CAM assay
17.  Therapeutic Cancer Vaccines: Past, Present and Future 
Advances in cancer research  2013;119:421-475.
Therapeutic vaccines represent a viable option for active immunotherapy of cancers that aim to treat late stage disease by using a patient's own immune system. The promising results from clinical trials recently led to the approval of the first therapeutic cancer vaccine by the U.S. Food and Drug Administration. This major breakthrough not only provides a new treatment modality for cancer management, but also paves the way for rationally designing and optimizing future vaccines with improved anticancer efficacy. Numerous vaccine strategies are currently being evaluated both pre-clinically and clinically. This review discusses therapeutic cancer vaccines of diverse platforms or targets as well as the preclinical and clinical studies employing these therapeutic vaccines. We will also consider tumor-induced immune suppression that hinders the potency of therapeutic vaccines, and potential strategies to counteract these mechanisms for generating more robust and durable antitumor immune responses.
PMCID: PMC3721379  PMID: 23870514
cancer vaccine; immunotherapy; tumor-associated antigen; immune modulator; immunosuppression; tumor microenvironment
18.  The role of tumor-associated macrophages in tumor vascularization 
Vascular Cell  2013;5:20.
Tumor vascularization is a highly complex process that involves the interaction between tumors and their surrounding stroma, as well as many distinct angiogenesis-regulating factors. Tumor associated macrophages (TAMs) represent one of the most abundant cell components in the tumor environment and key contributors to cancer-related inflammation. A large body of evidence supports the notion that TAMs play a critical role in promoting the formation of an abnormal tumor vascular network and subsequent tumor progression and invasion. Clinical and experimental evidence has shown that high levels of infiltrating TAMs are associated with poor patient prognosis and tumor resistance to therapies. In addition to stimulating angiogenesis during tumor growth, TAMs enhance tumor revascularization in response to cytotoxic therapy (e.g., radiotherapy), thereby causing cancer relapse. In this review, we highlight the emerging data related to the phenotype and polarization of TAMs in the tumor microenvironment, as well as the underlying mechanisms of macrophage function in the regulation of the angiogenic switch and tumor vascularization. Additionally, we discuss the potential of targeting pro-angiogenic TAMs, or reprograming TAMs toward a tumoricidal and angiostatic phenotype, to promote normalization of the tumor vasculature to enhance the outcome of cancer therapies.
PMCID: PMC3913793  PMID: 24314323
Angiogenesis; Tumor vascularization; Tumor-associated macrophages
19.  Astrocyte elevated gene-1 (AEG-1) promotes hepatocarcinogenesis: novel insights from a mouse model 
Hepatology (Baltimore, Md.)  2012;56(5):1782-1791.
Astrocyte elevated gene-1 (AEG-1) is a key contributor to hepatocellular carcinoma (HCC) development and progression. To enhance our understanding of the role of AEG-1 in hepatocarcinogenesis, a transgenic mouse with hepatocyte-specific expression of AEG-1 (Alb/AEG1) was developed. Treating Alb/AEG-1, but not Wild type (WT) mice, with N-nitrosodiethylamine (DEN), resulted in multinodular HCC with steatotic features and associated modulation of expression of genes regulating invasion, metastasis, angiogenesis and fatty acid synthesis. Hepatocytes isolated from Alb/AEG-1 mice displayed profound resistance to chemotherapeutics and growth factor deprivation with activation of pro-survival signaling pathways. Alb/AEG-1 hepatocytes also exhibited marked resistance towards senescence, which correlated with abrogation of activation of a DNA damage response. Conditioned media (CM) from Alb/AEG-1 hepatocytes induced marked angiogenesis with elevation in several coagulation factors. Among these factors, AEG-1 facilitated association of Factor XII (FXII) mRNA with polysomes resulting in increased translation. siRNA-mediated knockdown of FXII resulted in profound inhibition of AEG-1-induced angiogenesis.
We uncover novel aspects of AEG-1 functions, including induction of steatosis, inhibition of senescence and activation of coagulation pathway to augment aggressive hepatocarcinogenesis. The Alb/AEG-1 mouse provides an appropriate model to scrutinize the molecular mechanism of hepatocarcinogenesis and to evaluate the efficacy of novel therapeutic strategies targeting HCC.
PMCID: PMC3449036  PMID: 22689379
Astrocyte elevated gene-1 (AEG-1); transgenic; hepatocellular carcinoma (HCC); senescence; angiogenesis
20.  GADD45 proteins: central players in tumorigenesis 
Current molecular medicine  2012;12(5):634-651.
The Growth Arrest and DNA Damage-inducible 45 (GADD45) proteins have been implicated in regulation of many cellular functions including DNA repair, cell cycle control, senescence and genotoxic stress. However, the pro-apoptotic activities have also positioned GADD45 as an essential player in oncogenesis. Emerging functional evidence implies that GADD45 proteins serve as tumor suppressors in response to diverse stimuli, connecting multiple cell signaling modules. Defects in the GADD45 pathway can be related to the initiation and progression of malignancies. Moreover, induction of GADD45 expression is an essential step for mediating anti-cancer activity of multiple chemotherapeutic drugs and the absence of GADD45 might abrogate their effects in cancer cells. In this review, we present a comprehensive discussion of the functions of GADD45 proteins, linking their regulation to effectors of cell cycle arrest, DNA repair and apoptosis. The ramifications regarding their roles as essential and central players in tumor growth suppression are also examined. We also extensively review recent literature to clarify how different chemotherapeutic drugs induce GADD45 gene expression and how its up-regulation and interaction with different molecular partners may benefit cancer chemotherapy and facilitate novel drug discovery.
PMCID: PMC3797964  PMID: 22515981
GADD45 family; cancer; apoptosis; survival
21.  Identification of Genes Potentially Regulated by Human Polynucleotide Phosphorylase (hPNPaseold-35) Using Melanoma as a Model 
PLoS ONE  2013;8(10):e76284.
Human Polynucleotide Phosphorylase (hPNPaseold-35 or PNPT1) is an evolutionarily conserved 3′→5′ exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPaseold-35 in cellular physiology, we knocked-down and overexpressed hPNPaseold-35 in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPaseold-35 resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPaseold-35 caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPaseold-35 knockdown and overexpression datasets allowed us to identify 77 potential “direct” and 61 potential “indirect” targets of hPNPaseold-35 which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPaseold-35 expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes.
PMCID: PMC3797080  PMID: 24143183
22.  Selected Approaches for Rational Drug Design and High Throughput Screening to Identify Anti-Cancer Molecules 
Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specific-promoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.
PMCID: PMC3763986  PMID: 22931411
Progression Elevated Gene-3; Sabutoclax; Apogossypol; BI-97C1; Gossypol; AP-1; PEA3; ETV4; E1AF; c-fos; c-jun; Cancer Terminator Virus
23.  Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells 
Cancer Biology & Therapy  2013;14(11):1039-1049.
In the present study we show that histone deacetylase inhibitors (HDACIs) enhance the anti-tumor effects of melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) in human renal carcinoma cells. Similar data were obtained in other GU tumor cells. Combination of these two agents resulted in increased autophagy that was dependent on expression of ceramide synthase 6, with HDACIs enhancing MDA-7/IL-24 toxicity by increasing generation of ROS and Ca2+. Knock down of CD95 protected cells from HDACI and MDA-7/IL-24 lethality. Sorafenib treatment further enhanced (HDACI + MDA-7/IL-24) lethality. Anoikis resistant renal carcinoma cells were more sensitive to MDA-7/IL-24 that correlated with elevated SRC activity and tyrosine phosphorylation of CD95. We employed a recently constructed serotype 5/3 adenovirus, which is more effective than a serotype 5 virus in delivering mda-7/IL-24 to renal carcinoma cells and which conditionally replicates (CR) in tumor cells expressing MDA-7/IL-24 by virtue of placing the adenoviral E1A gene under the control of the cancer-specific promoter progression elevated gene-3 (Ad.5/3-PEG-E1A-mda-7; CRAd.5/3-mda-7, Ad.5/3-CTV), to define efficacy in renal carcinoma cells. Ad.5/3-CTV decreased the growth of renal carcinoma tumors to a significantly greater extent than did a non-replicative virus Ad.5/3-mda-7. In contralateral uninfected renal carcinoma tumors Ad.5/3-CTV also decreased the growth of tumors to a greater extent than did Ad.5/3-mda-7. In summation, our data demonstrates that HDACIs enhance MDA-7/IL-24-mediated toxicity and tumor specific adenoviral delivery and viral replication of mda-7/IL-24 is an effective pre-clinical renal carcinoma therapeutic.
PMCID: PMC3925659  PMID: 24025359
MDA-7/IL-24; HDACI; ceramide; apoptosis; bystander; cytokine; ROS; caspase; animal study
24.  Blockade of cytotoxic T-lymphocyte antigen-4 as a novel therapeutic approach for advanced melanoma 
Expert opinion on pharmacotherapy  2011;12(17):2695-2706.
The incidence of melanoma continues to rise and prognosis in patients with metastatic melanoma remains poor. The cytotoxic T-lymphocyte antigen-4 (CTLA-4) serves as one of the primary immune checkpoints and downregulates T cell activation pathways. Enhancing T cell activation by antibody blockade of the CTLA-4 provides a novel approach to overcome tumor-induced immune tolerance. Recently, anti-CTLA-4 therapy demonstrated significant clinical benefit in patients with metastatic melanoma, which led to the approval of ipilimumab by the Food and Drug Administration in early 2011.
Areas covered
The fundamental concepts underlying CTLA-4 blockade-potentiated immune activation, the scientific rationale for and the preclinical evidence supporting CTLA-4-targeted cancer immunotherapy are presented. We also provide an update on clinical trials with anti-CTLA-4 inhibitors and discuss the associated autoimmune toxicity.
Expert opinion
Given that overall survival is the only validated endpoint for the anti-CTLA-4 therapy, the clinical implications of the antigen or tumor-specific immunity in patients remain to be clarified. Additional research is necessary to elucidate the prognostic significance of immune-related side effects and significantly optimize the treatment regimens. An improved understanding of the mechanisms of action of CTLA-4 antibodies may also culminate in wide-ranging clinical applications of this novel therapy for other tumor types.
PMCID: PMC3711751  PMID: 22077831
cytotoxic T-lymphocyte-associated antigen; CTL-A blockade; T cell activation; tumor immunity; overall survival
25.  Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) in combination with the Apogossypol derivative BI-97C1 (Sabutoclax) improves therapeutic efficacy in low CAR colorectal cancer cells 
Journal of Cellular Physiology  2012;227(5):2145-2153.
Adenovirus (Ad)-based gene therapy represents a potentially viable strategy for treating colorectal cancer. The infectivity of serotype 5 adenovirus (Ad.5), routinely used as a transgene delivery vector, is dependent on Coxsackie-adenovirus receptors (CAR). CAR expression is downregulated in many cancers thus preventing optimum therapeutic efficiency of Ad.5-based therapies. To overcome the low CAR problem, a serotype chimerism approach was used to generate a recombinant Ad (Ad.5/3) that is capable of infecting cancer cells via Ad.3 receptors in a CAR-independent manner. We evaluated the improved transgene delivery and efficacy of Ad.5/3 recombinant virus expressing melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), an effective wide-spectrum cancer-selective therapeutic. In low CAR human colorectal cancer cells RKO, wild-type Ad.5 virus expressing mda-7/IL-24 (Ad.5-mda-7) failed to infect efficiently resulting in lack of expression of MDA-7/IL-24 or induction of apoptosis. However, a recombinant Ad.5/3 virus expressing mda-7/IL-24 (Ad.5/3-mda-7) efficiently infected RKO cells resulting in higher MDA-7/IL-24 expression and inhibition of cell growth both in vitro and in nude mice xenograft models. Addition of the novel Bcl-2 family pharmacological inhibitor Apogossypol derivative BI-97C1 (Sabutoclax) significantly augmented the efficacy of Ad.5/3-mda-7. A combination regimen of suboptimal doses of Ad.5/3-mda-7 and BI-97C1 profoundly enhanced cytotoxicity in RKO cells both in vitro and in vivo. Considering the fact that Ad.5-mda-7 has demonstrated significant objective responses in a Phase I clinical trial for advanced solid tumors, Ad.5/3-mda-7 alone or in combination with BI-97C1 would be predicted to exert significantly improved therapeutic efficacy in colorectal cancer patients.
PMCID: PMC3228880  PMID: 21780116
Viral gene therapy; Mcl-1 inhibition; apoptosis induction; anti-tumor activity

Results 1-25 (67)