PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Targeting the Bcl-2 Family for Cancer Therapy 
Introduction
Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation.
Areas covered
This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics.
Expert opinion
Strategies to specifically identify and inhibit critical determinants that promote therapy-resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying small molecule inhibitors with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
doi:10.1517/14728222.2013.733001
PMCID: PMC3955095  PMID: 23173842
BH3 domain; apoptosis; Mcl-1; radiation resistance; chemotherapy resistance
2.  Selected Approaches for Rational Drug Design and High Throughput Screening to Identify Anti-Cancer Molecules 
Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specific-promoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.
PMCID: PMC3763986  PMID: 22931411
Progression Elevated Gene-3; Sabutoclax; Apogossypol; BI-97C1; Gossypol; AP-1; PEA3; ETV4; E1AF; c-fos; c-jun; Cancer Terminator Virus
3.  Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) in combination with the Apogossypol derivative BI-97C1 (Sabutoclax) improves therapeutic efficacy in low CAR colorectal cancer cells 
Journal of Cellular Physiology  2012;227(5):2145-2153.
Adenovirus (Ad)-based gene therapy represents a potentially viable strategy for treating colorectal cancer. The infectivity of serotype 5 adenovirus (Ad.5), routinely used as a transgene delivery vector, is dependent on Coxsackie-adenovirus receptors (CAR). CAR expression is downregulated in many cancers thus preventing optimum therapeutic efficiency of Ad.5-based therapies. To overcome the low CAR problem, a serotype chimerism approach was used to generate a recombinant Ad (Ad.5/3) that is capable of infecting cancer cells via Ad.3 receptors in a CAR-independent manner. We evaluated the improved transgene delivery and efficacy of Ad.5/3 recombinant virus expressing melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), an effective wide-spectrum cancer-selective therapeutic. In low CAR human colorectal cancer cells RKO, wild-type Ad.5 virus expressing mda-7/IL-24 (Ad.5-mda-7) failed to infect efficiently resulting in lack of expression of MDA-7/IL-24 or induction of apoptosis. However, a recombinant Ad.5/3 virus expressing mda-7/IL-24 (Ad.5/3-mda-7) efficiently infected RKO cells resulting in higher MDA-7/IL-24 expression and inhibition of cell growth both in vitro and in nude mice xenograft models. Addition of the novel Bcl-2 family pharmacological inhibitor Apogossypol derivative BI-97C1 (Sabutoclax) significantly augmented the efficacy of Ad.5/3-mda-7. A combination regimen of suboptimal doses of Ad.5/3-mda-7 and BI-97C1 profoundly enhanced cytotoxicity in RKO cells both in vitro and in vivo. Considering the fact that Ad.5-mda-7 has demonstrated significant objective responses in a Phase I clinical trial for advanced solid tumors, Ad.5/3-mda-7 alone or in combination with BI-97C1 would be predicted to exert significantly improved therapeutic efficacy in colorectal cancer patients.
doi:10.1002/jcp.22947
PMCID: PMC3228880  PMID: 21780116
Viral gene therapy; Mcl-1 inhibition; apoptosis induction; anti-tumor activity
4.  Targeting Mcl-1 for the therapy of cancer 
Introduction
Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers.
Areas covered
Targeting Mcl-1 for extinction in these cancers, using genetic and pharmacological approaches, represents a potentially effectual means of developing new efficacious cancer therapeutics. Here we review the multiple strategies that have been employed in targeting this fundamental protein, as well as the significant potential these targeting agents provide in not only suppressing cancer growth, but also in reversing resistance to conventional cancer treatments.
Expert Opinion
We discuss the potential issues that arise in targeting Mcl-1 and other Bcl-2 anti-apoptotic proteins, as well problems with acquired resistance. The application of combinatorial approaches that involve inhibiting Mcl-1 and manipulation of additional signaling pathways to enhance therapeutic outcomes is also highlighted. The ability to specifically inhibit key genetic/epigenetic elements and biochemical pathways that maintain the tumor state represent a viable approach for developing rationally based, effective cancer therapies.
doi:10.1517/13543784.2011.609167
PMCID: PMC3205956  PMID: 21851287
5.  mda-7/IL-24: A Unique Member of the IL-10 Gene Family Promoting Cancer-Targeted Toxicity 
Cytokine & growth factor reviews  2010;21(5):381-391.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect anti-tumor activity through inhibition of angiogenesis, stimulation of an anti-tumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
doi:10.1016/j.cytogfr.2010.08.004
PMCID: PMC3164830  PMID: 20926331
mda-7/IL-24; apoptosis; autophagy; bystander antitumor activity; cancer terminator virus
6.  Development of a syngeneic mouse model of epithelial ovarian cancer 
Background
Most cases of ovarian cancer are epithelial in origin and diagnosed at advanced stage when the cancer is widely disseminated in the peritoneal cavity. The objective of this study was to establish an immunocompetent syngeneic mouse model of disseminated epithelial ovarian cancer (EOC) to facilitate laboratory-based studies of ovarian tumor biology and preclinical therapeutic strategies.
Methods
Individual lines of TgMISIIR-TAg transgenic mice were phenotypically characterized and backcrossed to inbred C57BL/6 mice. In addition to a previously described line of EOC-prone mice, two lines (TgMISIIR-TAg-Low) were isolated that express the oncogenic transgene, but have little or no susceptibility to tumor development. Independent murine ovarian carcinoma (MOVCAR) cell lines were established from the ascites of tumor-bearing C57BL/6 TgMISIIR-TAg transgenic mice, characterized and tested for engraftment in the following recipient mice: 1) severe immunocompromised immunodeficient (SCID), 2) wild type C57BL/6, 3) oophorectomized tumor-prone C57BL/6 TgMISIIR-TAg transgenic and 4) non-tumor prone C57BL/6 TgMISIIR-TAg-Low transgenic. Lastly, MOVCAR cells transduced with a luciferase reporter were implanted in TgMISIIR-TAg-Low mice and in vivo tumor growth monitored by non-invasive optical imaging.
Results
Engraftment of MOVCAR cells by i.p. injection resulted in the development of disseminated peritoneal carcinomatosis in SCID, but not wild type C57BL/6 mice. Oophorectomized tumor-prone TgMISIIR-TAg mice developed peritoneal carcinomas with high frequency, rendering them unsuitable as allograft recipients. Orthotopic or pseudo-orthotopic implantation of MOVCAR cells in TgMISIIR-TAg-Low mice resulted in the development of disseminated peritoneal tumors, frequently accompanied by the production of malignant ascites. Tumors arising in the engrafted mice bore histopathological resemblance to human high-grade serous EOC and exhibited a similar pattern of peritoneal disease spread.
Conclusions
A syngeneic mouse model of human EOC was created by pseudo-orthotopic and orthotopic implantation of MOVCAR cells in a susceptible inbred transgenic host. This immunocompetent syngeneic mouse model presents a flexible system that can be used to study the consequences of altered gene expression (e.g., by ectopic expression or RNA interference strategies) in an established MOVCAR tumor cell line within the ovarian tumor microenvironment and for the development and analysis of preclinical therapeutic agents including EOC vaccines and immunotherapeutic agents.
doi:10.1186/1757-2215-3-24
PMCID: PMC2974672  PMID: 20958993
7.  Induction of Ovarian Leiomyosarcomas in Mice by Conditional Inactivation of Brca1 and p53 
PLoS ONE  2009;4(12):e8404.
Background
Approximately one out of every ten cases of epithelial ovarian cancer (EOC) is inherited. The majority of inherited cases of EOC result from mutations in the breast cancer associated gene 1 (BRCA1). In addition to mutation of BRCA1, mutation of the p53 gene is often found in patients with inherited breast and ovarian cancer syndrome.
Methodology/Principal Findings
We investigated the role of loss of function of BRCA1 and p53 in ovarian cancer development using mouse models with conditionally expressed alleles of Brca1 and/or p53. Our results show that ovary-specific Cre-recombinase-mediated conditional inactivation of both Brca1LoxP/LoxP and p53LoxP/LoxP resulted in ovarian or reproductive tract tumor formation in 54% of mice, whereas conditional inactivation of either allele alone infrequently resulted in tumors (≤5% of mice). In mice with conditionally inactivated Brca1LoxP/LoxP and p53LoxP/LoxP, ovarian tumors arose after long latency with the majority exhibiting histological features consistent with high grade leiomyosarcomas lacking expression of epithelial, follicular or lymphocyte markers. In addition, tumors with conditional inactivation of both Brca1LoxP/LoxP and p53LoxP/LoxP exhibited greater genomic instability compared to an ovarian tumor with inactivation of only p53LoxP/LoxP.
Conclusions/Significance
Although conditional inactivation of both Brca1 and p53 results in ovarian tumorigenesis, our results suggest that additional genetic alterations or alternative methods for targeting epithelial cells of the ovary or fallopian tube for conditional inactivation of Brca1 and p53 are required for the development of a mouse model of Brca1-associated inherited EOC.
doi:10.1371/journal.pone.0008404
PMCID: PMC2796165  PMID: 20046879

Results 1-7 (7)