PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Vascular Endothelial Growth Factor Is a Key Mediator in the Development of T Cell Priming and Its Polarization to Type 1 and Type 17 T Helper Cells in the Airways 
Chronic inflammatory airway diseases including asthma are characterized by immune dysfunction to inhaled allergens. Our previous studies demonstrated that T cell priming to inhaled allergens requires LPS, which is ubiquitously present in household dust allergens. In this study, we evaluated the role of vascular endothelial growth factor (VEGF) in the development of T cell priming and its polarization to Th1 or Th17 cells when exposed to LPS-contaminated allergens. An asthma mouse model was induced by airway sensitization with LPS-contaminated allergens and then challenged with allergens alone. Therapeutic intervention was performed during allergen sensitization. The present study showed that lung inflammation induced by sensitization with LPS-contaminated allergens was decreased in mice with homozygous disruption of the IL-17 gene; in addition, allergen-specific Th17 immune response was abolished in IL-6 knockout mice. Meanwhile, in vivo production of VEGF was up-regulated by airway exposure of LPS. In addition, airway sensitization of allergen plus recombinant VEGF induced both type 1 and type 17 Th cell (Th1 and Th17) responses. Th1 and Th17 responses induced by airway sensitization with LPS-contaminated allergens were blocked by treatment with a pan-VEGF receptor (VEGFR; VEGFR-1 plus VEGFR-2) inhibitor during sensitization. These effects were accompanied by inhibition of the production of Th1 and Th17 polarizing cytokines, IL-12p70 and IL-6, respectively. These findings indicate that VEGF produced by LPS plays a key role in activation of naive T cells and subsequent polarization to Th1 and Th17 cells.
doi:10.4049/jimmunol.0901566
PMCID: PMC3385973  PMID: 19786548
2.  Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-γ 
Experimental & Molecular Medicine  2011;43(4):169-178.
Recent clinical evidence indicates that the non-eosinophilic subtype of severe asthma is characterized by fixed airway obstruction, which may be related to emphysema. Transgenic studies have demonstrated that high levels of IFN-γ in the airways induce emphysema. Fibroblast growth factor 2 (FGF2), which is the downstream mediator of TGF-β, is important in wound healing. We investigated the role of FGF2 in IFN-γ-induced emphysema and the therapeutic effects of recombinant FGF2 in the prevention of emphysema in a severe non-eosinophilic asthma model. To evaluate the role of FGF2 in IFN-γ-induced emphysema, lung targeted IFN-γ transgenic mice were cross-bred with FGF2-deficient mice. A severe non-eosinophilic asthma model was generated by airway application of LPS-containing allergens twice a week for 4 weeks. To evaluate protective effects of FGF2, recombinant FGF2 (10 µg) was injected subcutaneously during allergen challenge in the severe asthma model. We found that non-eosinophilic inflammation and emphysema induced by transgenic overexpression of IFN-γ in the airways were aggravated by the absence of FGF2. Airway challenge with LPS-containing allergens induced more inflammation in mice sensitized with LPS-containing allergens compared to challenge with allergens alone. In addition, LPS-induced lung inflammation and emphysema depended on IFN-γ but not on IL-13. Interestingly, emphysema in the severe asthma model was significantly inhibited by treatment with recombinant FGF2 during allergen challenge, whereas lung inflammation was unaffected. Therefore, our present data suggest that FGF2 may help protect against IFN-γ-induced emphysema, and that recombinant FGF2 may help lessen the severity of emphysema.
doi:10.3858/emm.2011.43.4.018
PMCID: PMC3085735  PMID: 21297377
asthma; emphysema; fibroblast growth factor 2; interferon-γ; pulmonary eosinophilia
3.  Role of inducible nitric oxide synthase on the development of virus-associated asthma exacerbation which is dependent on Th1 and Th17 cell responses 
Experimental & Molecular Medicine  2010;42(10):721-730.
Asthma is characterized by airway inflammation induced by immune dysfunction to inhaled antigens. Although respiratory viral infections are the most common cause of asthma exacerbation, immunologic mechanisms underlying virus-associated asthma exacerbation are controversial. Clinical evidence indicates that nitric oxide (NO) levels in exhaled air are increased in exacerbated asthma patients compared to stable patients. Here, we evaluated the immunologic mechanisms and the role of NO synthases (NOSs) in the development of virus-associated asthma exacerbation. A murine model of virus-associated asthma exacerbation was established using intranasal challenge with ovalbumin (OVA) plus dsRNA for 4 weeks in mice sensitized with OVA plus dsRNA. Lung infiltration of inflammatory cells, especially neutrophils, was increased by repeated challenge with OVA plus dsRNA, as compared to OVA alone. The neutrophilic inflammation enhanced by dsRNA was partly abolished in the absence of IFN-gamma or IL-17 gene expression, whereas unaffected in the absence of IL-13. In terms of the roles of NOSs, dsRNA-enhanced neutrophilic inflammation was significantly decreased in inducible NOS (iNOS)-deficient mice compared to wild type controls; in addition, this phenotype was inhibited by treatment with a non-specific NOS inhibitor (L-NAME) or an specific inhibitor (1400 W), but not with a specific endothelial NOS inhibitor (AP-CAV peptide). Taken together, these findings suggest that iNOS pathway is important in the development of virus-associated exacerbation of neutrophilic inflammation, which is dependent on both Th1 and Th17 cell responses.
doi:10.3858/emm.2010.42.10.072
PMCID: PMC2966746  PMID: 20841959
asthma; interferon-γ; interleukin-17; neutrophils; nitric oxide synthase type II; RNA viruses; Th1 cells

Results 1-3 (3)