Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Shan, peiping")
1.  Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury 
High levels of inspired oxygen, hyperoxia, are frequently used in patients with acute respiratory failure. Hyperoxia can exacerbate acute respiratory failure, which has high mortality and no specific therapies. We identified a novel roles for PINK1 (PTEN-induced putative kinase 1), a mitochondrial protein, and the cytosolic innate immune protein, NLRP3, in the lung and endothelium. We generated double knockouts (PINK1−/−/NLRP3−/−) as well as cell-targeted PINK1 silencing and lung-targeted overexpression constructs to specifically show that PINK1 mediates cytoprotection in wild type (WT) and NLRP3−/− mice. The ability to resist hyperoxia is proportional to PINK1 expression – PINK1−/− mice were the most susceptible, WT mice, which induced PINK1 after hyperoxia, had intermediate susceptibility and NLRP3−/− mice, which had high basal and hyperoxia-induced PINK1, were the least susceptible. Genetic deletion of PINK1 or PINK1 silencing in the lung endothelium increased susceptibility to hyperoxia via alterations in autophagy/mitophagy, proteasome activation, apoptosis and oxidant generation.
PMCID: PMC4047670  PMID: 24778451
2.  A Protective Hsp70-TLR4 Pathway in Lethal Oxidant Lung Injury 
Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can exacerbate respiratory failure. Our previous study showed that toll-like receptor 4 (TLR4) confers protection against hyperoxia-induced lung injury and mortality. Hsp70 has potent cytoprotective properties and has been described as a TLR4 ligand in cell lines. We sought to elucidate the relationship between TLR4 and Hsp70 in hyperoxia-induced lung injury in vitro and in vivo and to define the signaling mechanisms involved. Wild type, TLR4−/− and Trif−/− (a TLR4 adapter protein) murine lung endothelial cells (MLEC) were exposed to hyperoxia. We found markedly elevated levels of intracellular and secreted Hsp70 from mice lung and MLEC after hyperoxia. We confirmed that Hsp70 and TLR4 co-immunoprecipitate in lung tissue and MLEC. Hsp70-mediated NFκB activation appears to depend upon TLR4. In the absence of TLR4, Hsp70 loses its protective effects in endothelial cells. Furthermore, these protective properties of Hsp70 are TLR4 adapter Trif-dependent, MyD88-independent. Hsp70-deficient mice have increased mortality during hyperoxia and lung-targeted adenoviral delivery of Hsp70 effectively rescues both Hsp70-deficient and wild type mice. Our studies are the first to define an Hsp70-TLR4-Trif cytoprotective axis in the lung and endothelial cells. This pathway is a potential therapeutic target against a range of oxidant-induced lung injuries.
PMCID: PMC3730854  PMID: 23817427
3.  Endothelial MKK3 is a critical mediator of lethal murine endotoxemia and acute lung injury 
Sepsis is a leading cause of intensive care unit admissions with high mortality and morbidity. Although outcomes have improved with better supportive care, specific therapies are limited. Endothelial activation and oxidant injury are key events in the pathogenesis of sepsis-induced lung injury. The signaling pathways leading to these events remain poorly defined and need to be studied. We sought to determine the role of MAP kinase kinase 3 (MKK3), a kinase of the p38 group in the pathogenesis of sepsis. We used a murine intraperitoneal lipopolysaccharide (LPS) model of systemic inflammation to mimic sepsis. Lung injury parameters were assessed in lung tissue and bronchoalveolar lavage. Primary lung endothelial cells were cultured and assessed for mediators of inflammation and injury such as ICAM-1, AP-1, NF-κB and mitochondrial ROS. Our studies demonstrate that MKK3 deficiency confers virtually complete protection against organ injury after intraperitoneal LPS. Specifically, MKK3 −/− mice were protected against acute lung injury, as assessed by reduced inflammation, mitochondrial reactive oxygen species (ROS) generation, endothelial injury and ICAM-1 expression after LPS. Our results show that endothelial MKK3 is required for inflammatory cell recruitment to the lungs, mitochondrial oxidant-mediated AP-1, NF-κB activation and ICAM-1 expression during LPS challenge. Collectively, these studies identify a novel role for MKK3 in lethal LPS responses and provide new therapeutic targets against sepsis and acute lung injury.
PMCID: PMC3552142  PMID: 23275604
4.  Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells 
Increased circulating cytokine levels are a prominent feature of aging that may contribute to atherosclerosis. However, the role vascular cells play in chronic inflammation induced by aging is not clear. Here, we examined the role of aging on inflammatory responses of vascular cells.
Methods and Results
In an ex vivo culture system, we examined the inflammatory response of aortas from young (2-4 months) and aged (16-18 months) mice under non-stimulatory conditions. We found that basal levels of interleukin (IL)-6 were increased in aged aortas. Aged aortic vascular smooth muscle cells (VSMC) exhibited a higher basal secretion of IL-6 than young VSMC. Gene and protein expression analysis revealed that aged VSMC exhibited upregulation of chemokines (e.g. CCL2), adhesion molecules (e.g., ICAM1), and innate immune receptors (e.g., Toll like receptor [TLR] 4), which all contribute to atherosclerosis. Using VSMC from aged TL4-/- and Myd88-/- mice, we demonstrate that signaling via TLR4 and its signal adaptor, MyD88, are in part responsible for the age-elevated basal IL-6 response.
Aging induces a proinflammatory phenotype in VSMC due in part to increased signaling of TLR4 and MyD88. Our results provide a potential explanation as to why aging leads to chronic inflammation and enhanced atherosclerosis.
PMCID: PMC3241880  PMID: 22034510
aging; atherosclerosis; inflammation; mouse; vascular smooth muscle cells
5.  Toll-like receptor 4 deficiency causes pulmonary emphysema 
Journal of Clinical Investigation  2006;116(11):3050-3059.
TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4–/– mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4–/– mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema.
PMCID: PMC1616193  PMID: 17053835
6.  ERK1/2 mitogen-activated protein kinase selectively mediates IL-13–induced lung inflammation and remodeling in vivo 
Journal of Clinical Investigation  2005;116(1):163-173.
IL-13 dysregulation plays a critical role in the pathogenesis of a variety of inflammatory and remodeling diseases. In these settings, STAT6 is believed to be the canonical signaling molecule mediating the tissue effects of IL-13. Signaling cascades involving MAPKs have been linked to inflammation and remodeling. We hypothesized that MAPKs play critical roles in effector responses induced by IL-13 in the lung. We found that Tg IL-13 expression in the lung led to potent activation of ERK1/2 but not JNK1/2 or p38. ERK1/2 activation also occurred in mice with null mutations of STAT6. Systemic administration of the MAPK/ERK kinase 1 (MEK1) inhibitor PD98059 or use of Tg mice in which a dominant-negative MEK1 construct was expressed inhibited IL-13–induced inflammation and alveolar remodeling. There were associated decreases in IL-13–induced chemokines (MIP-1α/CCL-3, MIP-1β/CCL-4, MIP-2/CXCL-1, RANTES/CCL-5), MMP-2, -9, -12, and -14, and cathepsin B and increased levels of α1-antitrypsin. IL-13–induced tissue and molecular responses were noted that were equally and differentially dependent on ERK1/2 and STAT6 signaling. Thus, ERK1/2 is activated by IL-13 in the lung in a STAT6-independent manner where it contributes to IL-13–induced inflammation and remodeling and is required for optimal IL-13 stimulation of specific chemokines and proteases as well as the inhibition of specific antiproteases. ERK1/2 regulators may be useful in the treatment of IL-13–induced diseases and disorders.
PMCID: PMC1319220  PMID: 16374521

Results 1-6 (6)