Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Bcl-2–related protein A1 is an endogenous and cytokine-stimulated mediator of cytoprotection in hyperoxic acute lung injury 
Journal of Clinical Investigation  2005;115(4):1039-1048.
Hyperoxic acute lung injury (HALI) is characterized by a cell death response with features of apoptosis and necrosis that is inhibited by IL-11 and other interventions. We hypothesized that Bfl-1/A1, an antiapoptotic Bcl-2 protein, is a critical regulator of HALI and a mediator of IL-11–induced cytoprotection. To test this, we characterized the expression of A1 and the oxygen susceptibility of WT and IL-11 Tg(+) mice with normal and null A1 loci. In WT mice, 100% O2 caused TUNEL+ cell death, induction and activation of intrinsic and mitochondrial-death pathways, and alveolar protein leak. Bcl-2 and Bcl-xl were also induced as an apparent protective response. A1 was induced in hyperoxia, and in A1-null mice, the toxic effects of hyperoxia were exaggerated, Bcl-2 and Bcl-xl were not induced, and premature death was seen. In contrast, IL-11 stimulated A1, diminished the toxic effects of hyperoxia, stimulated Bcl-2 and Bcl-xl, and enhanced murine survival in 100% O2. In A1-null mice, IL-11–induced protection, survival advantage, and Bcl-2 and Bcl-xl induction were significantly decreased. VEGF also conferred protection via an A1-dependent mechanism. In vitro hyperoxia also stimulated A1, and A1 overexpression inhibited oxidant-induced epithelial cell apoptosis and necrosis. A1 is an important regulator of oxidant-induced lung injury, apoptosis, necrosis, and Bcl-2 and Bcl-xl gene expression and a critical mediator of IL-11– and VEGF-induced cytoprotection.
PMCID: PMC1070412  PMID: 15841185
2.  Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13–induced inflammation and remodeling 
IL-13 potently stimulates eosinophilic and lymphocytic inflammation and alveolar remodeling in the lung, effects that depend on the induction of various matrix metalloproteinases (MMPs). Here, we compared the remodeling and inflammatory effects of an IL-13 transgene in lungs of wild-type, MMP-9–deficient, or MMP-12–deficient mice. IL-13–induced alveolar enlargement, lung enlargement, compliance alterations, and respiratory failure and death were markedly decreased in the absence of MMP-9 or MMP-12. Moreover, IL-13 potently induced MMPs-2, -12, -13, and -14 in the absence of MMP-9, while induction of MMPs-2, -9, -13, and -14 by IL-13 was diminished in the absence of MMP-12. A deficiency in MMP-9 did not alter eosinophil, macrophage, or lymphocyte recovery, but increased the recovery of total leukocytes and neutrophils in bronchoalveolar lavage (BAL) fluids from IL-13 transgenic mice. In contrast, a deficiency in MMP-12 decreased the recovery of leukocytes, eosinophils, and macrophages, but not lymphocytes or neutrophils. These studies demonstrate that IL-13 acts via MMPs-9 and -12 to induce alveolar remodeling, respiratory failure, and death and that IL-13 induction of MMPs-2, -9, -13, and -14 is mediated at least partially by an MMP-12–dependent pathway. The also demonstrate that MMPs-9 and -12 play different roles in the generation of IL-13–induced inflammation, with MMP-9 inhibiting neutrophil accumulation and MMP-12 contributing to the accumulation of eosinophils and macrophages.
PMCID: PMC150413  PMID: 12189240

Results 1-2 (2)